ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0ss Unicode version

Theorem pw0ss 15723
Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
pw0ss  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
Distinct variable group:    j, s

Proof of Theorem pw0ss
StepHypRef Expression
1 pw0 3782 . . 3  |-  ~P (/)  =  { (/)
}
21rabeqi 2766 . 2  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  { s  e.  { (/) }  |  E. j  j  e.  s }
3 rabeq0 3491 . . 3  |-  ( { s  e.  { (/) }  |  E. j  j  e.  s }  =  (/)  <->  A. s  e.  { (/) }  -.  E. j  j  e.  s )
4 elsni 3652 . . . 4  |-  ( s  e.  { (/) }  ->  s  =  (/) )
5 notm0 3482 . . . 4  |-  ( -. 
E. j  j  e.  s  <->  s  =  (/) )
64, 5sylibr 134 . . 3  |-  ( s  e.  { (/) }  ->  -. 
E. j  j  e.  s )
73, 6mprgbir 2565 . 2  |-  { s  e.  { (/) }  |  E. j  j  e.  s }  =  (/)
82, 7eqtri 2227 1  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373   E.wex 1516    e. wcel 2177   {crab 2489   (/)c0 3461   ~Pcpw 3617   {csn 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3169  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640
This theorem is referenced by:  uhgr0vb  15724  uhgr0  15725
  Copyright terms: Public domain W3C validator