ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0ss Unicode version

Theorem pw0ss 15891
Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
pw0ss  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
Distinct variable group:    j, s

Proof of Theorem pw0ss
StepHypRef Expression
1 pw0 3815 . . 3  |-  ~P (/)  =  { (/)
}
21rabeqi 2792 . 2  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  { s  e.  { (/) }  |  E. j  j  e.  s }
3 rabeq0 3521 . . 3  |-  ( { s  e.  { (/) }  |  E. j  j  e.  s }  =  (/)  <->  A. s  e.  { (/) }  -.  E. j  j  e.  s )
4 elsni 3684 . . . 4  |-  ( s  e.  { (/) }  ->  s  =  (/) )
5 notm0 3512 . . . 4  |-  ( -. 
E. j  j  e.  s  <->  s  =  (/) )
64, 5sylibr 134 . . 3  |-  ( s  e.  { (/) }  ->  -. 
E. j  j  e.  s )
73, 6mprgbir 2588 . 2  |-  { s  e.  { (/) }  |  E. j  j  e.  s }  =  (/)
82, 7eqtri 2250 1  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395   E.wex 1538    e. wcel 2200   {crab 2512   (/)c0 3491   ~Pcpw 3649   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672
This theorem is referenced by:  uhgr0vb  15892  uhgr0  15893
  Copyright terms: Public domain W3C validator