ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0ss Unicode version

Theorem pw0ss 15848
Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
pw0ss  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
Distinct variable group:    j, s

Proof of Theorem pw0ss
StepHypRef Expression
1 pw0 3794 . . 3  |-  ~P (/)  =  { (/)
}
21rabeqi 2772 . 2  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  { s  e.  { (/) }  |  E. j  j  e.  s }
3 rabeq0 3501 . . 3  |-  ( { s  e.  { (/) }  |  E. j  j  e.  s }  =  (/)  <->  A. s  e.  { (/) }  -.  E. j  j  e.  s )
4 elsni 3664 . . . 4  |-  ( s  e.  { (/) }  ->  s  =  (/) )
5 notm0 3492 . . . 4  |-  ( -. 
E. j  j  e.  s  <->  s  =  (/) )
64, 5sylibr 134 . . 3  |-  ( s  e.  { (/) }  ->  -. 
E. j  j  e.  s )
73, 6mprgbir 2568 . 2  |-  { s  e.  { (/) }  |  E. j  j  e.  s }  =  (/)
82, 7eqtri 2230 1  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1375   E.wex 1518    e. wcel 2180   {crab 2492   (/)c0 3471   ~Pcpw 3629   {csn 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rab 2497  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652
This theorem is referenced by:  uhgr0vb  15849  uhgr0  15850
  Copyright terms: Public domain W3C validator