ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgr0vb Unicode version

Theorem uhgr0vb 15724
Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0vb  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph 
<->  (iEdg `  G )  =  (/) ) )

Proof of Theorem uhgr0vb
Dummy variables  s  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2206 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2uhgrfm 15713 . . 3  |-  ( G  e. UHGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } )
4 pweq 3620 . . . . . . . 8  |-  ( (Vtx
`  G )  =  (/)  ->  ~P (Vtx `  G )  =  ~P (/) )
54rabeqdv 2767 . . . . . . 7  |-  ( (Vtx
`  G )  =  (/)  ->  { s  e. 
~P (Vtx `  G
)  |  E. j 
j  e.  s }  =  { s  e. 
~P (/)  |  E. j 
j  e.  s } )
6 pw0ss 15723 . . . . . . 7  |-  { s  e.  ~P (/)  |  E. j  j  e.  s }  =  (/)
75, 6eqtrdi 2255 . . . . . 6  |-  ( (Vtx
`  G )  =  (/)  ->  { s  e. 
~P (Vtx `  G
)  |  E. j 
j  e.  s }  =  (/) )
87adantl 277 . . . . 5  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s }  =  (/) )
98feq3d 5420 . . . 4  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } 
<->  (iEdg `  G ) : dom  (iEdg `  G
) --> (/) ) )
10 f00 5474 . . . . 5  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> (/)  <->  (
(iEdg `  G )  =  (/)  /\  dom  (iEdg `  G )  =  (/) ) )
1110simplbi 274 . . . 4  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> (/)  ->  (iEdg `  G )  =  (/) )
129, 11biimtrdi 163 . . 3  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s }  ->  (iEdg `  G
)  =  (/) ) )
133, 12syl5 32 . 2  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph  ->  (iEdg `  G
)  =  (/) ) )
14 simpl 109 . . . . 5  |-  ( ( G  e.  W  /\  (iEdg `  G )  =  (/) )  ->  G  e.  W )
15 simpr 110 . . . . 5  |-  ( ( G  e.  W  /\  (iEdg `  G )  =  (/) )  ->  (iEdg `  G )  =  (/) )
1614, 15uhgr0e 15722 . . . 4  |-  ( ( G  e.  W  /\  (iEdg `  G )  =  (/) )  ->  G  e. UHGraph )
1716ex 115 . . 3  |-  ( G  e.  W  ->  (
(iEdg `  G )  =  (/)  ->  G  e. UHGraph ) )
1817adantr 276 . 2  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( (iEdg `  G )  =  (/)  ->  G  e. UHGraph ) )
1913, 18impbid 129 1  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  ( G  e. UHGraph 
<->  (iEdg `  G )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   {crab 2489   (/)c0 3461   ~Pcpw 3617   dom cdm 4679   -->wf 5272   ` cfv 5276  Vtxcvtx 15655  iEdgciedg 15656  UHGraphcuhgr 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-sub 8252  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-dec 9512  df-ndx 12879  df-slot 12880  df-base 12882  df-edgf 15648  df-vtx 15657  df-iedg 15658  df-uhgrm 15709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator