ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgr0e Unicode version

Theorem uhgr0e 15890
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
uhgr0e.g  |-  ( ph  ->  G  e.  W )
uhgr0e.e  |-  ( ph  ->  (iEdg `  G )  =  (/) )
Assertion
Ref Expression
uhgr0e  |-  ( ph  ->  G  e. UHGraph )

Proof of Theorem uhgr0e
Dummy variables  s  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f0 5518 . . 3  |-  (/) : (/) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s }
2 dm0 4937 . . . 4  |-  dom  (/)  =  (/)
32feq2i 5467 . . 3  |-  ( (/) : dom  (/) --> { s  e. 
~P (Vtx `  G
)  |  E. j 
j  e.  s }  <->  (/)
: (/) --> { s  e. 
~P (Vtx `  G
)  |  E. j 
j  e.  s } )
41, 3mpbir 146 . 2  |-  (/) : dom  (/) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s }
5 uhgr0e.g . . . 4  |-  ( ph  ->  G  e.  W )
6 eqid 2229 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
7 eqid 2229 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
86, 7isuhgrm 15879 . . . 4  |-  ( G  e.  W  ->  ( G  e. UHGraph  <->  (iEdg `  G ) : dom  (iEdg `  G
) --> { s  e. 
~P (Vtx `  G
)  |  E. j 
j  e.  s } ) )
95, 8syl 14 . . 3  |-  ( ph  ->  ( G  e. UHGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } ) )
10 uhgr0e.e . . . 4  |-  ( ph  ->  (iEdg `  G )  =  (/) )
11 id 19 . . . . 5  |-  ( (iEdg `  G )  =  (/)  ->  (iEdg `  G )  =  (/) )
12 dmeq 4923 . . . . 5  |-  ( (iEdg `  G )  =  (/)  ->  dom  (iEdg `  G
)  =  dom  (/) )
1311, 12feq12d 5463 . . . 4  |-  ( (iEdg `  G )  =  (/)  ->  ( (iEdg `  G
) : dom  (iEdg `  G ) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } 
<->  (/) : dom  (/) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } ) )
1410, 13syl 14 . . 3  |-  ( ph  ->  ( (iEdg `  G
) : dom  (iEdg `  G ) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } 
<->  (/) : dom  (/) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } ) )
159, 14bitrd 188 . 2  |-  ( ph  ->  ( G  e. UHGraph  <->  (/) : dom  (/) --> { s  e.  ~P (Vtx `  G )  |  E. j  j  e.  s } ) )
164, 15mpbiri 168 1  |-  ( ph  ->  G  e. UHGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {crab 2512   (/)c0 3491   ~Pcpw 3649   dom cdm 4719   -->wf 5314   ` cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  UHGraphcuhgr 15875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-uhgrm 15877
This theorem is referenced by:  uhgr0vb  15892
  Copyright terms: Public domain W3C validator