ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0ss GIF version

Theorem pw0ss 15723
Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
pw0ss {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = ∅
Distinct variable group:   𝑗,𝑠

Proof of Theorem pw0ss
StepHypRef Expression
1 pw0 3782 . . 3 𝒫 ∅ = {∅}
21rabeqi 2766 . 2 {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗𝑠}
3 rabeq0 3491 . . 3 ({𝑠 ∈ {∅} ∣ ∃𝑗 𝑗𝑠} = ∅ ↔ ∀𝑠 ∈ {∅} ¬ ∃𝑗 𝑗𝑠)
4 elsni 3652 . . . 4 (𝑠 ∈ {∅} → 𝑠 = ∅)
5 notm0 3482 . . . 4 (¬ ∃𝑗 𝑗𝑠𝑠 = ∅)
64, 5sylibr 134 . . 3 (𝑠 ∈ {∅} → ¬ ∃𝑗 𝑗𝑠)
73, 6mprgbir 2565 . 2 {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗𝑠} = ∅
82, 7eqtri 2227 1 {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wex 1516  wcel 2177  {crab 2489  c0 3461  𝒫 cpw 3617  {csn 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3169  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640
This theorem is referenced by:  uhgr0vb  15724  uhgr0  15725
  Copyright terms: Public domain W3C validator