| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw0ss | GIF version | ||
| Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| pw0ss | ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3782 | . . 3 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 1 | rabeqi 2766 | . 2 ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗 ∈ 𝑠} |
| 3 | rabeq0 3491 | . . 3 ⊢ ({𝑠 ∈ {∅} ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ ↔ ∀𝑠 ∈ {∅} ¬ ∃𝑗 𝑗 ∈ 𝑠) | |
| 4 | elsni 3652 | . . . 4 ⊢ (𝑠 ∈ {∅} → 𝑠 = ∅) | |
| 5 | notm0 3482 | . . . 4 ⊢ (¬ ∃𝑗 𝑗 ∈ 𝑠 ↔ 𝑠 = ∅) | |
| 6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝑠 ∈ {∅} → ¬ ∃𝑗 𝑗 ∈ 𝑠) |
| 7 | 3, 6 | mprgbir 2565 | . 2 ⊢ {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| 8 | 2, 7 | eqtri 2227 | 1 ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∃wex 1516 ∈ wcel 2177 {crab 2489 ∅c0 3461 𝒫 cpw 3617 {csn 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 |
| This theorem is referenced by: uhgr0vb 15724 uhgr0 15725 |
| Copyright terms: Public domain | W3C validator |