| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw0ss | GIF version | ||
| Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| pw0ss | ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3815 | . . 3 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 1 | rabeqi 2792 | . 2 ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗 ∈ 𝑠} |
| 3 | rabeq0 3521 | . . 3 ⊢ ({𝑠 ∈ {∅} ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ ↔ ∀𝑠 ∈ {∅} ¬ ∃𝑗 𝑗 ∈ 𝑠) | |
| 4 | elsni 3684 | . . . 4 ⊢ (𝑠 ∈ {∅} → 𝑠 = ∅) | |
| 5 | notm0 3512 | . . . 4 ⊢ (¬ ∃𝑗 𝑗 ∈ 𝑠 ↔ 𝑠 = ∅) | |
| 6 | 4, 5 | sylibr 134 | . . 3 ⊢ (𝑠 ∈ {∅} → ¬ ∃𝑗 𝑗 ∈ 𝑠) |
| 7 | 3, 6 | mprgbir 2588 | . 2 ⊢ {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| 8 | 2, 7 | eqtri 2250 | 1 ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 ∅c0 3491 𝒫 cpw 3649 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: uhgr0vb 15892 uhgr0 15893 |
| Copyright terms: Public domain | W3C validator |