ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0ss GIF version

Theorem pw0ss 15891
Description: There are no inhabited subsets of the empty set. (Contributed by Jim Kingdon, 31-Dec-2025.)
Assertion
Ref Expression
pw0ss {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = ∅
Distinct variable group:   𝑗,𝑠

Proof of Theorem pw0ss
StepHypRef Expression
1 pw0 3815 . . 3 𝒫 ∅ = {∅}
21rabeqi 2792 . 2 {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗𝑠}
3 rabeq0 3521 . . 3 ({𝑠 ∈ {∅} ∣ ∃𝑗 𝑗𝑠} = ∅ ↔ ∀𝑠 ∈ {∅} ¬ ∃𝑗 𝑗𝑠)
4 elsni 3684 . . . 4 (𝑠 ∈ {∅} → 𝑠 = ∅)
5 notm0 3512 . . . 4 (¬ ∃𝑗 𝑗𝑠𝑠 = ∅)
64, 5sylibr 134 . . 3 (𝑠 ∈ {∅} → ¬ ∃𝑗 𝑗𝑠)
73, 6mprgbir 2588 . 2 {𝑠 ∈ {∅} ∣ ∃𝑗 𝑗𝑠} = ∅
82, 7eqtri 2250 1 {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗𝑠} = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1395  wex 1538  wcel 2200  {crab 2512  c0 3491  𝒫 cpw 3649  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672
This theorem is referenced by:  uhgr0vb  15892  uhgr0  15893
  Copyright terms: Public domain W3C validator