Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltg3i | Unicode version |
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
eltg3i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 | |
2 | pwuni 4187 | . . . . 5 | |
3 | 1, 2 | jctir 313 | . . . 4 |
4 | ssin 3355 | . . . 4 | |
5 | 3, 4 | sylib 122 | . . 3 |
6 | 5 | unissd 3829 | . 2 |
7 | eltg 13123 | . . 3 | |
8 | 7 | adantr 276 | . 2 |
9 | 6, 8 | mpbird 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wcel 2146 cin 3126 wss 3127 cpw 3572 cuni 3805 cfv 5208 ctg 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-topgen 12631 |
This theorem is referenced by: eltg3 13128 tgiun 13144 tgidm 13145 tgrest 13240 |
Copyright terms: Public domain | W3C validator |