ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg3i Unicode version

Theorem eltg3i 13641
Description: The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3i  |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  e.  ( topGen `
 B ) )

Proof of Theorem eltg3i
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  B )
2 pwuni 4194 . . . . 5  |-  A  C_  ~P U. A
31, 2jctir 313 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( A  C_  B  /\  A  C_  ~P U. A ) )
4 ssin 3359 . . . 4  |-  ( ( A  C_  B  /\  A  C_  ~P U. A
)  <->  A  C_  ( B  i^i  ~P U. A
) )
53, 4sylib 122 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  C_  ( B  i^i  ~P
U. A ) )
65unissd 3835 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  C_  U. ( B  i^i  ~P U. A
) )
7 eltg 13637 . . 3  |-  ( B  e.  V  ->  ( U. A  e.  ( topGen `
 B )  <->  U. A  C_  U. ( B  i^i  ~P U. A ) ) )
87adantr 276 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( U. A  e.  ( topGen `  B )  <->  U. A  C_  U. ( B  i^i  ~P U. A
) ) )
96, 8mpbird 167 1  |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  e.  ( topGen `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148    i^i cin 3130    C_ wss 3131   ~Pcpw 3577   U.cuni 3811   ` cfv 5218   topGenctg 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-topgen 12714
This theorem is referenced by:  eltg3  13642  tgiun  13658  tgidm  13659  tgrest  13754
  Copyright terms: Public domain W3C validator