| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 |
|
| Ref | Expression |
|---|---|
| expimpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4340 swopo 4396 reusv3 4550 ralxfrd 4552 rexxfrd 4553 nlimsucg 4657 poirr2 5120 elpreima 5753 fmptco 5800 tposfo2 6411 nnm00 6674 th3qlem1 6782 fiintim 7089 supmoti 7156 infglbti 7188 infnlbti 7189 updjud 7245 recexprlemss1l 7818 recexprlemss1u 7819 cauappcvgprlemladdru 7839 cauappcvgprlemladdrl 7840 caucvgprlemladdrl 7861 uzind 9554 ledivge1le 9918 xltnegi 10027 ixxssixx 10094 seqf1oglem1 10736 expnegzap 10790 shftlem 11322 cau3lem 11620 caubnd2 11623 climuni 11799 2clim 11807 summodclem2 11888 summodc 11889 zsumdc 11890 fsumf1o 11896 fisumss 11898 fsumcl2lem 11904 fsumadd 11912 fsummulc2 11954 prodmodclem2 12083 prodmodc 12084 zproddc 12085 fprodf1o 12094 fprodssdc 12096 fprodmul 12097 dfgcd2 12530 cncongrprm 12674 prmpwdvds 12873 infpnlem1 12877 1arith 12885 isgrpid2 13568 dvdsrd 14052 dvdsrtr 14059 dvdsrmul1 14060 unitgrp 14074 domnmuln0 14231 eltg3 14725 tgidm 14742 tgrest 14837 tgcn 14876 lmtopcnp 14918 txbasval 14935 txcnp 14939 bldisj 15069 xblm 15085 blssps 15095 blss 15096 blssexps 15097 blssex 15098 metcnp3 15179 mpomulcn 15234 2lgslem3 15774 2sqlem6 15793 2sqlem7 15794 bj-findis 16300 |
| Copyright terms: Public domain | W3C validator |