![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
expimpd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | impd 254 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: euotd 4255 swopo 4307 reusv3 4461 ralxfrd 4463 rexxfrd 4464 nlimsucg 4566 poirr2 5022 elpreima 5636 fmptco 5683 tposfo2 6268 nnm00 6531 th3qlem1 6637 fiintim 6928 supmoti 6992 infglbti 7024 infnlbti 7025 updjud 7081 recexprlemss1l 7634 recexprlemss1u 7635 cauappcvgprlemladdru 7655 cauappcvgprlemladdrl 7656 caucvgprlemladdrl 7677 uzind 9364 ledivge1le 9726 xltnegi 9835 ixxssixx 9902 expnegzap 10554 shftlem 10825 cau3lem 11123 caubnd2 11126 climuni 11301 2clim 11309 summodclem2 11390 summodc 11391 zsumdc 11392 fsumf1o 11398 fisumss 11400 fsumcl2lem 11406 fsumadd 11414 fsummulc2 11456 prodmodclem2 11585 prodmodc 11586 zproddc 11587 fprodf1o 11596 fprodssdc 11598 fprodmul 11599 dfgcd2 12015 cncongrprm 12157 prmpwdvds 12353 infpnlem1 12357 1arith 12365 isgrpid2 12913 dvdsrd 13263 dvdsrtr 13270 dvdsrmul1 13271 unitgrp 13285 eltg3 13560 tgidm 13577 tgrest 13672 tgcn 13711 lmtopcnp 13753 txbasval 13770 txcnp 13774 bldisj 13904 xblm 13920 blssps 13930 blss 13931 blssexps 13932 blssex 13933 metcnp3 14014 2sqlem6 14470 2sqlem7 14471 bj-findis 14734 |
Copyright terms: Public domain | W3C validator |