![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
expimpd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | impd 254 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: euotd 4283 swopo 4337 reusv3 4491 ralxfrd 4493 rexxfrd 4494 nlimsucg 4598 poirr2 5058 elpreima 5677 fmptco 5724 tposfo2 6320 nnm00 6583 th3qlem1 6691 fiintim 6985 supmoti 7052 infglbti 7084 infnlbti 7085 updjud 7141 recexprlemss1l 7695 recexprlemss1u 7696 cauappcvgprlemladdru 7716 cauappcvgprlemladdrl 7717 caucvgprlemladdrl 7738 uzind 9428 ledivge1le 9792 xltnegi 9901 ixxssixx 9968 seqf1oglem1 10590 expnegzap 10644 shftlem 10960 cau3lem 11258 caubnd2 11261 climuni 11436 2clim 11444 summodclem2 11525 summodc 11526 zsumdc 11527 fsumf1o 11533 fisumss 11535 fsumcl2lem 11541 fsumadd 11549 fsummulc2 11591 prodmodclem2 11720 prodmodc 11721 zproddc 11722 fprodf1o 11731 fprodssdc 11733 fprodmul 11734 dfgcd2 12151 cncongrprm 12295 prmpwdvds 12493 infpnlem1 12497 1arith 12505 isgrpid2 13112 dvdsrd 13590 dvdsrtr 13597 dvdsrmul1 13598 unitgrp 13612 domnmuln0 13769 eltg3 14225 tgidm 14242 tgrest 14337 tgcn 14376 lmtopcnp 14418 txbasval 14435 txcnp 14439 bldisj 14569 xblm 14585 blssps 14595 blss 14596 blssexps 14597 blssex 14598 metcnp3 14679 2sqlem6 15207 2sqlem7 15208 bj-findis 15471 |
Copyright terms: Public domain | W3C validator |