| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 |
|
| Ref | Expression |
|---|---|
| expimpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4298 swopo 4352 reusv3 4506 ralxfrd 4508 rexxfrd 4509 nlimsucg 4613 poirr2 5074 elpreima 5698 fmptco 5745 tposfo2 6352 nnm00 6615 th3qlem1 6723 fiintim 7027 supmoti 7094 infglbti 7126 infnlbti 7127 updjud 7183 recexprlemss1l 7747 recexprlemss1u 7748 cauappcvgprlemladdru 7768 cauappcvgprlemladdrl 7769 caucvgprlemladdrl 7790 uzind 9483 ledivge1le 9847 xltnegi 9956 ixxssixx 10023 seqf1oglem1 10662 expnegzap 10716 shftlem 11069 cau3lem 11367 caubnd2 11370 climuni 11546 2clim 11554 summodclem2 11635 summodc 11636 zsumdc 11637 fsumf1o 11643 fisumss 11645 fsumcl2lem 11651 fsumadd 11659 fsummulc2 11701 prodmodclem2 11830 prodmodc 11831 zproddc 11832 fprodf1o 11841 fprodssdc 11843 fprodmul 11844 dfgcd2 12277 cncongrprm 12421 prmpwdvds 12620 infpnlem1 12624 1arith 12632 isgrpid2 13314 dvdsrd 13798 dvdsrtr 13805 dvdsrmul1 13806 unitgrp 13820 domnmuln0 13977 eltg3 14471 tgidm 14488 tgrest 14583 tgcn 14622 lmtopcnp 14664 txbasval 14681 txcnp 14685 bldisj 14815 xblm 14831 blssps 14841 blss 14842 blssexps 14843 blssex 14844 metcnp3 14925 mpomulcn 14980 2lgslem3 15520 2sqlem6 15539 2sqlem7 15540 bj-findis 15848 |
| Copyright terms: Public domain | W3C validator |