| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 |
|
| Ref | Expression |
|---|---|
| expimpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4307 swopo 4361 reusv3 4515 ralxfrd 4517 rexxfrd 4518 nlimsucg 4622 poirr2 5084 elpreima 5712 fmptco 5759 tposfo2 6366 nnm00 6629 th3qlem1 6737 fiintim 7043 supmoti 7110 infglbti 7142 infnlbti 7143 updjud 7199 recexprlemss1l 7768 recexprlemss1u 7769 cauappcvgprlemladdru 7789 cauappcvgprlemladdrl 7790 caucvgprlemladdrl 7811 uzind 9504 ledivge1le 9868 xltnegi 9977 ixxssixx 10044 seqf1oglem1 10686 expnegzap 10740 shftlem 11202 cau3lem 11500 caubnd2 11503 climuni 11679 2clim 11687 summodclem2 11768 summodc 11769 zsumdc 11770 fsumf1o 11776 fisumss 11778 fsumcl2lem 11784 fsumadd 11792 fsummulc2 11834 prodmodclem2 11963 prodmodc 11964 zproddc 11965 fprodf1o 11974 fprodssdc 11976 fprodmul 11977 dfgcd2 12410 cncongrprm 12554 prmpwdvds 12753 infpnlem1 12757 1arith 12765 isgrpid2 13447 dvdsrd 13931 dvdsrtr 13938 dvdsrmul1 13939 unitgrp 13953 domnmuln0 14110 eltg3 14604 tgidm 14621 tgrest 14716 tgcn 14755 lmtopcnp 14797 txbasval 14814 txcnp 14818 bldisj 14948 xblm 14964 blssps 14974 blss 14975 blssexps 14976 blssex 14977 metcnp3 15058 mpomulcn 15113 2lgslem3 15653 2sqlem6 15672 2sqlem7 15673 bj-findis 16053 |
| Copyright terms: Public domain | W3C validator |