| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 |
|
| Ref | Expression |
|---|---|
| expimpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4297 swopo 4351 reusv3 4505 ralxfrd 4507 rexxfrd 4508 nlimsucg 4612 poirr2 5072 elpreima 5693 fmptco 5740 tposfo2 6343 nnm00 6606 th3qlem1 6714 fiintim 7010 supmoti 7077 infglbti 7109 infnlbti 7110 updjud 7166 recexprlemss1l 7730 recexprlemss1u 7731 cauappcvgprlemladdru 7751 cauappcvgprlemladdrl 7752 caucvgprlemladdrl 7773 uzind 9466 ledivge1le 9830 xltnegi 9939 ixxssixx 10006 seqf1oglem1 10645 expnegzap 10699 shftlem 11046 cau3lem 11344 caubnd2 11347 climuni 11523 2clim 11531 summodclem2 11612 summodc 11613 zsumdc 11614 fsumf1o 11620 fisumss 11622 fsumcl2lem 11628 fsumadd 11636 fsummulc2 11678 prodmodclem2 11807 prodmodc 11808 zproddc 11809 fprodf1o 11818 fprodssdc 11820 fprodmul 11821 dfgcd2 12254 cncongrprm 12398 prmpwdvds 12597 infpnlem1 12601 1arith 12609 isgrpid2 13290 dvdsrd 13774 dvdsrtr 13781 dvdsrmul1 13782 unitgrp 13796 domnmuln0 13953 eltg3 14447 tgidm 14464 tgrest 14559 tgcn 14598 lmtopcnp 14640 txbasval 14657 txcnp 14661 bldisj 14791 xblm 14807 blssps 14817 blss 14818 blssexps 14819 blssex 14820 metcnp3 14901 mpomulcn 14956 2lgslem3 15496 2sqlem6 15515 2sqlem7 15516 bj-findis 15779 |
| Copyright terms: Public domain | W3C validator |