| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) | 
| Ref | Expression | 
|---|---|
| expimpd.1 | 
 | 
| Ref | Expression | 
|---|---|
| expimpd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | expimpd.1 | 
. . 3
 | |
| 2 | 1 | ex 115 | 
. 2
 | 
| 3 | 2 | impd 254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: euotd 4287 swopo 4341 reusv3 4495 ralxfrd 4497 rexxfrd 4498 nlimsucg 4602 poirr2 5062 elpreima 5681 fmptco 5728 tposfo2 6325 nnm00 6588 th3qlem1 6696 fiintim 6992 supmoti 7059 infglbti 7091 infnlbti 7092 updjud 7148 recexprlemss1l 7702 recexprlemss1u 7703 cauappcvgprlemladdru 7723 cauappcvgprlemladdrl 7724 caucvgprlemladdrl 7745 uzind 9437 ledivge1le 9801 xltnegi 9910 ixxssixx 9977 seqf1oglem1 10611 expnegzap 10665 shftlem 10981 cau3lem 11279 caubnd2 11282 climuni 11458 2clim 11466 summodclem2 11547 summodc 11548 zsumdc 11549 fsumf1o 11555 fisumss 11557 fsumcl2lem 11563 fsumadd 11571 fsummulc2 11613 prodmodclem2 11742 prodmodc 11743 zproddc 11744 fprodf1o 11753 fprodssdc 11755 fprodmul 11756 dfgcd2 12181 cncongrprm 12325 prmpwdvds 12524 infpnlem1 12528 1arith 12536 isgrpid2 13172 dvdsrd 13650 dvdsrtr 13657 dvdsrmul1 13658 unitgrp 13672 domnmuln0 13829 eltg3 14293 tgidm 14310 tgrest 14405 tgcn 14444 lmtopcnp 14486 txbasval 14503 txcnp 14507 bldisj 14637 xblm 14653 blssps 14663 blss 14664 blssexps 14665 blssex 14666 metcnp3 14747 mpomulcn 14802 2lgslem3 15342 2sqlem6 15361 2sqlem7 15362 bj-findis 15625 | 
| Copyright terms: Public domain | W3C validator |