| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | Unicode version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 |
|
| Ref | Expression |
|---|---|
| expimpd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4288 swopo 4342 reusv3 4496 ralxfrd 4498 rexxfrd 4499 nlimsucg 4603 poirr2 5063 elpreima 5684 fmptco 5731 tposfo2 6334 nnm00 6597 th3qlem1 6705 fiintim 7001 supmoti 7068 infglbti 7100 infnlbti 7101 updjud 7157 recexprlemss1l 7719 recexprlemss1u 7720 cauappcvgprlemladdru 7740 cauappcvgprlemladdrl 7741 caucvgprlemladdrl 7762 uzind 9454 ledivge1le 9818 xltnegi 9927 ixxssixx 9994 seqf1oglem1 10628 expnegzap 10682 shftlem 10998 cau3lem 11296 caubnd2 11299 climuni 11475 2clim 11483 summodclem2 11564 summodc 11565 zsumdc 11566 fsumf1o 11572 fisumss 11574 fsumcl2lem 11580 fsumadd 11588 fsummulc2 11630 prodmodclem2 11759 prodmodc 11760 zproddc 11761 fprodf1o 11770 fprodssdc 11772 fprodmul 11773 dfgcd2 12206 cncongrprm 12350 prmpwdvds 12549 infpnlem1 12553 1arith 12561 isgrpid2 13242 dvdsrd 13726 dvdsrtr 13733 dvdsrmul1 13734 unitgrp 13748 domnmuln0 13905 eltg3 14377 tgidm 14394 tgrest 14489 tgcn 14528 lmtopcnp 14570 txbasval 14587 txcnp 14591 bldisj 14721 xblm 14737 blssps 14747 blss 14748 blssexps 14749 blssex 14750 metcnp3 14831 mpomulcn 14886 2lgslem3 15426 2sqlem6 15445 2sqlem7 15446 bj-findis 15709 |
| Copyright terms: Public domain | W3C validator |