ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss Unicode version

Theorem recnprss 13707
Description: Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3612 . 2  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2 ax-resscn 7878 . . . 4  |-  RR  C_  CC
3 sseq1 3176 . . . 4  |-  ( S  =  RR  ->  ( S  C_  CC  <->  RR  C_  CC ) )
42, 3mpbiri 168 . . 3  |-  ( S  =  RR  ->  S  C_  CC )
5 eqimss 3207 . . 3  |-  ( S  =  CC  ->  S  C_  CC )
64, 5jaoi 716 . 2  |-  ( ( S  =  RR  \/  S  =  CC )  ->  S  C_  CC )
71, 6syl 14 1  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    = wceq 1353    e. wcel 2146    C_ wss 3127   {cpr 3590   CCcc 7784   RRcr 7785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596
This theorem is referenced by:  dvfgg  13708  dvaddxx  13718  dvmulxx  13719  dviaddf  13720  dvimulf  13721
  Copyright terms: Public domain W3C validator