ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss Unicode version

Theorem recnprss 15007
Description: Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3646 . 2  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2 ax-resscn 7988 . . . 4  |-  RR  C_  CC
3 sseq1 3207 . . . 4  |-  ( S  =  RR  ->  ( S  C_  CC  <->  RR  C_  CC ) )
42, 3mpbiri 168 . . 3  |-  ( S  =  RR  ->  S  C_  CC )
5 eqimss 3238 . . 3  |-  ( S  =  CC  ->  S  C_  CC )
64, 5jaoi 717 . 2  |-  ( ( S  =  RR  \/  S  =  CC )  ->  S  C_  CC )
71, 6syl 14 1  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2167    C_ wss 3157   {cpr 3624   CCcc 7894   RRcr 7895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630
This theorem is referenced by:  dvfgg  15008  dvidsslem  15013  dvconstss  15018  dvaddxx  15023  dvmulxx  15024  dviaddf  15025  dvimulf  15026  dvmptfsum  15045
  Copyright terms: Public domain W3C validator