ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss Unicode version

Theorem recnprss 15355
Description: Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3689 . 2  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2 ax-resscn 8087 . . . 4  |-  RR  C_  CC
3 sseq1 3247 . . . 4  |-  ( S  =  RR  ->  ( S  C_  CC  <->  RR  C_  CC ) )
42, 3mpbiri 168 . . 3  |-  ( S  =  RR  ->  S  C_  CC )
5 eqimss 3278 . . 3  |-  ( S  =  CC  ->  S  C_  CC )
64, 5jaoi 721 . 2  |-  ( ( S  =  RR  \/  S  =  CC )  ->  S  C_  CC )
71, 6syl 14 1  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   {cpr 3667   CCcc 7993   RRcr 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  dvfgg  15356  dvidsslem  15361  dvconstss  15366  dvaddxx  15371  dvmulxx  15372  dviaddf  15373  dvimulf  15374  dvmptfsum  15393
  Copyright terms: Public domain W3C validator