ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss Unicode version

Theorem recnprss 13306
Description: Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3599 . 2  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2 ax-resscn 7845 . . . 4  |-  RR  C_  CC
3 sseq1 3165 . . . 4  |-  ( S  =  RR  ->  ( S  C_  CC  <->  RR  C_  CC ) )
42, 3mpbiri 167 . . 3  |-  ( S  =  RR  ->  S  C_  CC )
5 eqimss 3196 . . 3  |-  ( S  =  CC  ->  S  C_  CC )
64, 5jaoi 706 . 2  |-  ( ( S  =  RR  \/  S  =  CC )  ->  S  C_  CC )
71, 6syl 14 1  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343    e. wcel 2136    C_ wss 3116   {cpr 3577   CCcc 7751   RRcr 7752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583
This theorem is referenced by:  dvfgg  13307  dvaddxx  13317  dvmulxx  13318  dviaddf  13319  dvimulf  13320
  Copyright terms: Public domain W3C validator