Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recnprss | Unicode version |
Description: Both and are subsets of . (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 3612 | . 2 | |
2 | ax-resscn 7878 | . . . 4 | |
3 | sseq1 3176 | . . . 4 | |
4 | 2, 3 | mpbiri 168 | . . 3 |
5 | eqimss 3207 | . . 3 | |
6 | 4, 5 | jaoi 716 | . 2 |
7 | 1, 6 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 708 wceq 1353 wcel 2146 wss 3127 cpr 3590 cc 7784 cr 7785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 |
This theorem is referenced by: dvfgg 13708 dvaddxx 13718 dvmulxx 13719 dviaddf 13720 dvimulf 13721 |
Copyright terms: Public domain | W3C validator |