ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss Unicode version

Theorem recnprss 15274
Description: Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3666 . 2  |-  ( S  e.  { RR ,  CC }  ->  ( S  =  RR  \/  S  =  CC ) )
2 ax-resscn 8052 . . . 4  |-  RR  C_  CC
3 sseq1 3224 . . . 4  |-  ( S  =  RR  ->  ( S  C_  CC  <->  RR  C_  CC ) )
42, 3mpbiri 168 . . 3  |-  ( S  =  RR  ->  S  C_  CC )
5 eqimss 3255 . . 3  |-  ( S  =  CC  ->  S  C_  CC )
64, 5jaoi 718 . 2  |-  ( ( S  =  RR  \/  S  =  CC )  ->  S  C_  CC )
71, 6syl 14 1  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178    C_ wss 3174   {cpr 3644   CCcc 7958   RRcr 7959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650
This theorem is referenced by:  dvfgg  15275  dvidsslem  15280  dvconstss  15285  dvaddxx  15290  dvmulxx  15291  dviaddf  15292  dvimulf  15293  dvmptfsum  15312
  Copyright terms: Public domain W3C validator