ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf Unicode version

Theorem dvimulf 15228
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dvimulf  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )

Proof of Theorem dvimulf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5  |-  ( ph  ->  F : X --> CC )
21adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
3 dviaddf.x . . . . 5  |-  ( ph  ->  X  C_  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
5 dvaddf.g . . . . 5  |-  ( ph  ->  G : X --> CC )
65adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
7 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
87adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
9 dvaddf.df . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
109eleq2d 2276 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
1110biimpar 297 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
12 dvaddf.dg . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
1312eleq2d 2276 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
1413biimpar 297 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
152, 4, 6, 8, 11, 14dvmulxx 15226 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  x.  G
) ) `  x
)  =  ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
1615mpteq2dva 4139 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G ) ) `  x ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
17 cnex 8062 . . . . . . 7  |-  CC  e.  _V
1817a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
19 mulcl 8065 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2019adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
217, 3ssexd 4189 . . . . . . 7  |-  ( ph  ->  X  e.  _V )
22 inidm 3384 . . . . . . 7  |-  ( X  i^i  X )  =  X
2320, 1, 5, 21, 21, 22off 6181 . . . . . 6  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
24 elpm2r 6763 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  x.  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
2518, 7, 23, 3, 24syl22anc 1251 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
26 dvfgg 15210 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC )
277, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
28 recnprss 15209 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
297, 28syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3029, 23, 3dvbss 15207 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  C_  X )
31 reldvg 15201 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3229, 25, 31syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3332adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  x.  G
) ) )
3429adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
35 elpm2r 6763 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
3618, 7, 1, 3, 35syl22anc 1251 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
37 dvfgg 15210 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
387, 36, 37syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
39 ffun 5435 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
40 funfvbrb 5703 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4138, 39, 403syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4241adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4311, 42mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
44 elpm2r 6763 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
4518, 7, 5, 3, 44syl22anc 1251 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
46 dvfgg 15210 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
477, 45, 46syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
48 ffun 5435 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
49 funfvbrb 5703 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5047, 48, 493syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5150adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5214, 51mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
53 eqid 2206 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
542, 4, 6, 34, 43, 52, 53dvmulxxbr 15224 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
55 releldm 4919 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  x.  G ) )  /\  x ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
)  +  ( ( ( S  _D  G
) `  x )  x.  ( F `  x
) ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G
) ) )
5633, 54, 55syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G ) ) )
5730, 56eqelssd 3214 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  =  X )
5857feq2d 5420 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC  <->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC ) )
5927, 58mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC )
6059feqmptd 5642 . 2  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G
) ) `  x
) ) )
619feq2d 5420 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6238, 61mpbid 147 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6362ffvelcdmda 5725 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  CC )
645ffvelcdmda 5725 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  CC )
6563, 64mulcld 8106 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  e.  CC )
6612feq2d 5420 . . . . . 6  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
6747, 66mpbid 147 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
6867ffvelcdmda 5725 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  e.  CC )
691ffvelcdmda 5725 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  CC )
7068, 69mulcld 8106 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  G ) `  x
)  x.  ( F `
 x ) )  e.  CC )
7162feqmptd 5642 . . . 4  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
725feqmptd 5642 . . . 4  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
7321, 63, 64, 71, 72offval2 6184 . . 3  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  G )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
) ) )
7467feqmptd 5642 . . . 4  |-  ( ph  ->  ( S  _D  G
)  =  ( x  e.  X  |->  ( ( S  _D  G ) `
 x ) ) )
751feqmptd 5642 . . . 4  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
7621, 68, 69, 74, 75offval2 6184 . . 3  |-  ( ph  ->  ( ( S  _D  G )  oF  x.  F )  =  ( x  e.  X  |->  ( ( ( S  _D  G ) `  x )  x.  ( F `  x )
) ) )
7721, 65, 70, 73, 76offval2 6184 . 2  |-  ( ph  ->  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G
)  oF  x.  F ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
7816, 60, 773eqtr4d 2249 1  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3168   {cpr 3636   class class class wbr 4048    |-> cmpt 4110   dom cdm 4680    o. ccom 4684   Rel wrel 4685   Fun wfun 5271   -->wf 5273   ` cfv 5277  (class class class)co 5954    oFcof 6166    ^pm cpm 6746   CCcc 7936   RRcr 7937    + caddc 7941    x. cmul 7943    - cmin 8256   abscabs 11358   MetOpencmopn 14353    _D cdv 15177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058  ax-addf 8060  ax-mulf 8061
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-of 6168  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-map 6747  df-pm 6748  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-xneg 9907  df-xadd 9908  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-rest 13123  df-topgen 13142  df-psmet 14355  df-xmet 14356  df-met 14357  df-bl 14358  df-mopn 14359  df-top 14520  df-topon 14533  df-bases 14565  df-ntr 14618  df-cn 14710  df-cnp 14711  df-tx 14775  df-cncf 15093  df-limced 15178  df-dvap 15179
This theorem is referenced by:  dvexp  15233  dvmptmulx  15242
  Copyright terms: Public domain W3C validator