| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvimulf | Unicode version | ||
| Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s |
|
| dviaddf.x |
|
| dvaddf.f |
|
| dvaddf.g |
|
| dvaddf.df |
|
| dvaddf.dg |
|
| Ref | Expression |
|---|---|
| dvimulf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.f |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | dviaddf.x |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | dvaddf.g |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | dvaddf.s |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | dvaddf.df |
. . . . . 6
| |
| 10 | 9 | eleq2d 2276 |
. . . . 5
|
| 11 | 10 | biimpar 297 |
. . . 4
|
| 12 | dvaddf.dg |
. . . . . 6
| |
| 13 | 12 | eleq2d 2276 |
. . . . 5
|
| 14 | 13 | biimpar 297 |
. . . 4
|
| 15 | 2, 4, 6, 8, 11, 14 | dvmulxx 15226 |
. . 3
|
| 16 | 15 | mpteq2dva 4139 |
. 2
|
| 17 | cnex 8062 |
. . . . . . 7
| |
| 18 | 17 | a1i 9 |
. . . . . 6
|
| 19 | mulcl 8065 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 7, 3 | ssexd 4189 |
. . . . . . 7
|
| 22 | inidm 3384 |
. . . . . . 7
| |
| 23 | 20, 1, 5, 21, 21, 22 | off 6181 |
. . . . . 6
|
| 24 | elpm2r 6763 |
. . . . . 6
| |
| 25 | 18, 7, 23, 3, 24 | syl22anc 1251 |
. . . . 5
|
| 26 | dvfgg 15210 |
. . . . 5
| |
| 27 | 7, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | recnprss 15209 |
. . . . . . . 8
| |
| 29 | 7, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29, 23, 3 | dvbss 15207 |
. . . . . 6
|
| 31 | reldvg 15201 |
. . . . . . . . 9
| |
| 32 | 29, 25, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 29 | adantr 276 |
. . . . . . . 8
|
| 35 | elpm2r 6763 |
. . . . . . . . . . . . 13
| |
| 36 | 18, 7, 1, 3, 35 | syl22anc 1251 |
. . . . . . . . . . . 12
|
| 37 | dvfgg 15210 |
. . . . . . . . . . . 12
| |
| 38 | 7, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
|
| 39 | ffun 5435 |
. . . . . . . . . . 11
| |
| 40 | funfvbrb 5703 |
. . . . . . . . . . 11
| |
| 41 | 38, 39, 40 | 3syl 17 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | 11, 42 | mpbid 147 |
. . . . . . . 8
|
| 44 | elpm2r 6763 |
. . . . . . . . . . . . 13
| |
| 45 | 18, 7, 5, 3, 44 | syl22anc 1251 |
. . . . . . . . . . . 12
|
| 46 | dvfgg 15210 |
. . . . . . . . . . . 12
| |
| 47 | 7, 45, 46 | syl2anc 411 |
. . . . . . . . . . 11
|
| 48 | ffun 5435 |
. . . . . . . . . . 11
| |
| 49 | funfvbrb 5703 |
. . . . . . . . . . 11
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 14, 51 | mpbid 147 |
. . . . . . . 8
|
| 53 | eqid 2206 |
. . . . . . . 8
| |
| 54 | 2, 4, 6, 34, 43, 52, 53 | dvmulxxbr 15224 |
. . . . . . 7
|
| 55 | releldm 4919 |
. . . . . . 7
| |
| 56 | 33, 54, 55 | syl2anc 411 |
. . . . . 6
|
| 57 | 30, 56 | eqelssd 3214 |
. . . . 5
|
| 58 | 57 | feq2d 5420 |
. . . 4
|
| 59 | 27, 58 | mpbid 147 |
. . 3
|
| 60 | 59 | feqmptd 5642 |
. 2
|
| 61 | 9 | feq2d 5420 |
. . . . . 6
|
| 62 | 38, 61 | mpbid 147 |
. . . . 5
|
| 63 | 62 | ffvelcdmda 5725 |
. . . 4
|
| 64 | 5 | ffvelcdmda 5725 |
. . . 4
|
| 65 | 63, 64 | mulcld 8106 |
. . 3
|
| 66 | 12 | feq2d 5420 |
. . . . . 6
|
| 67 | 47, 66 | mpbid 147 |
. . . . 5
|
| 68 | 67 | ffvelcdmda 5725 |
. . . 4
|
| 69 | 1 | ffvelcdmda 5725 |
. . . 4
|
| 70 | 68, 69 | mulcld 8106 |
. . 3
|
| 71 | 62 | feqmptd 5642 |
. . . 4
|
| 72 | 5 | feqmptd 5642 |
. . . 4
|
| 73 | 21, 63, 64, 71, 72 | offval2 6184 |
. . 3
|
| 74 | 67 | feqmptd 5642 |
. . . 4
|
| 75 | 1 | feqmptd 5642 |
. . . 4
|
| 76 | 21, 68, 69, 74, 75 | offval2 6184 |
. . 3
|
| 77 | 21, 65, 70, 73, 76 | offval2 6184 |
. 2
|
| 78 | 16, 60, 77 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 ax-addf 8060 ax-mulf 8061 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-of 6168 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-map 6747 df-pm 6748 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-xneg 9907 df-xadd 9908 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-rest 13123 df-topgen 13142 df-psmet 14355 df-xmet 14356 df-met 14357 df-bl 14358 df-mopn 14359 df-top 14520 df-topon 14533 df-bases 14565 df-ntr 14618 df-cn 14710 df-cnp 14711 df-tx 14775 df-cncf 15093 df-limced 15178 df-dvap 15179 |
| This theorem is referenced by: dvexp 15233 dvmptmulx 15242 |
| Copyright terms: Public domain | W3C validator |