ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf Unicode version

Theorem dvimulf 13310
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dvimulf  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )

Proof of Theorem dvimulf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5  |-  ( ph  ->  F : X --> CC )
21adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
3 dviaddf.x . . . . 5  |-  ( ph  ->  X  C_  S )
43adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
5 dvaddf.g . . . . 5  |-  ( ph  ->  G : X --> CC )
65adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
7 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
87adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
9 dvaddf.df . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
109eleq2d 2236 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
1110biimpar 295 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
12 dvaddf.dg . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
1312eleq2d 2236 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
1413biimpar 295 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
152, 4, 6, 8, 11, 14dvmulxx 13308 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  x.  G
) ) `  x
)  =  ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
1615mpteq2dva 4072 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G ) ) `  x ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
17 cnex 7877 . . . . . . 7  |-  CC  e.  _V
1817a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
19 mulcl 7880 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2019adantl 275 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
217, 3ssexd 4122 . . . . . . 7  |-  ( ph  ->  X  e.  _V )
22 inidm 3331 . . . . . . 7  |-  ( X  i^i  X )  =  X
2320, 1, 5, 21, 21, 22off 6062 . . . . . 6  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
24 elpm2r 6632 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  x.  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
2518, 7, 23, 3, 24syl22anc 1229 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
26 dvfgg 13297 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC )
277, 25, 26syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
28 recnprss 13296 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
297, 28syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3029, 23, 3dvbss 13294 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  C_  X )
31 reldvg 13288 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3229, 25, 31syl2anc 409 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3332adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  x.  G
) ) )
3429adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
35 elpm2r 6632 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
3618, 7, 1, 3, 35syl22anc 1229 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
37 dvfgg 13297 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
387, 36, 37syl2anc 409 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
39 ffun 5340 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
40 funfvbrb 5598 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4138, 39, 403syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4241adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4311, 42mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
44 elpm2r 6632 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
4518, 7, 5, 3, 44syl22anc 1229 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
46 dvfgg 13297 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
477, 45, 46syl2anc 409 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
48 ffun 5340 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
49 funfvbrb 5598 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5047, 48, 493syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5150adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5214, 51mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
53 eqid 2165 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
542, 4, 6, 34, 43, 52, 53dvmulxxbr 13306 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
55 releldm 4839 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  x.  G ) )  /\  x ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
)  +  ( ( ( S  _D  G
) `  x )  x.  ( F `  x
) ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G
) ) )
5633, 54, 55syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G ) ) )
5730, 56eqelssd 3161 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  =  X )
5857feq2d 5325 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC  <->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC ) )
5927, 58mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC )
6059feqmptd 5539 . 2  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G
) ) `  x
) ) )
619feq2d 5325 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6238, 61mpbid 146 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6362ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  CC )
645ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  CC )
6563, 64mulcld 7919 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  e.  CC )
6612feq2d 5325 . . . . . 6  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
6747, 66mpbid 146 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
6867ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  e.  CC )
691ffvelrnda 5620 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  CC )
7068, 69mulcld 7919 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  G ) `  x
)  x.  ( F `
 x ) )  e.  CC )
7162feqmptd 5539 . . . 4  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
725feqmptd 5539 . . . 4  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
7321, 63, 64, 71, 72offval2 6065 . . 3  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  G )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
) ) )
7467feqmptd 5539 . . . 4  |-  ( ph  ->  ( S  _D  G
)  =  ( x  e.  X  |->  ( ( S  _D  G ) `
 x ) ) )
751feqmptd 5539 . . . 4  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
7621, 68, 69, 74, 75offval2 6065 . . 3  |-  ( ph  ->  ( ( S  _D  G )  oF  x.  F )  =  ( x  e.  X  |->  ( ( ( S  _D  G ) `  x )  x.  ( F `  x )
) ) )
7721, 65, 70, 73, 76offval2 6065 . 2  |-  ( ph  ->  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G
)  oF  x.  F ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
7816, 60, 773eqtr4d 2208 1  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116   {cpr 3577   class class class wbr 3982    |-> cmpt 4043   dom cdm 4604    o. ccom 4608   Rel wrel 4609   Fun wfun 5182   -->wf 5184   ` cfv 5188  (class class class)co 5842    oFcof 6048    ^pm cpm 6615   CCcc 7751   RRcr 7752    + caddc 7756    x. cmul 7758    - cmin 8069   abscabs 10939   MetOpencmopn 12625    _D cdv 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  dvexp  13315  dvmptmulx  13322
  Copyright terms: Public domain W3C validator