| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvimulf | Unicode version | ||
| Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s |
|
| dviaddf.x |
|
| dvaddf.f |
|
| dvaddf.g |
|
| dvaddf.df |
|
| dvaddf.dg |
|
| Ref | Expression |
|---|---|
| dvimulf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.f |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | dviaddf.x |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | dvaddf.g |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | dvaddf.s |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | dvaddf.df |
. . . . . 6
| |
| 10 | 9 | eleq2d 2266 |
. . . . 5
|
| 11 | 10 | biimpar 297 |
. . . 4
|
| 12 | dvaddf.dg |
. . . . . 6
| |
| 13 | 12 | eleq2d 2266 |
. . . . 5
|
| 14 | 13 | biimpar 297 |
. . . 4
|
| 15 | 2, 4, 6, 8, 11, 14 | dvmulxx 14940 |
. . 3
|
| 16 | 15 | mpteq2dva 4123 |
. 2
|
| 17 | cnex 8003 |
. . . . . . 7
| |
| 18 | 17 | a1i 9 |
. . . . . 6
|
| 19 | mulcl 8006 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 7, 3 | ssexd 4173 |
. . . . . . 7
|
| 22 | inidm 3372 |
. . . . . . 7
| |
| 23 | 20, 1, 5, 21, 21, 22 | off 6148 |
. . . . . 6
|
| 24 | elpm2r 6725 |
. . . . . 6
| |
| 25 | 18, 7, 23, 3, 24 | syl22anc 1250 |
. . . . 5
|
| 26 | dvfgg 14924 |
. . . . 5
| |
| 27 | 7, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | recnprss 14923 |
. . . . . . . 8
| |
| 29 | 7, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29, 23, 3 | dvbss 14921 |
. . . . . 6
|
| 31 | reldvg 14915 |
. . . . . . . . 9
| |
| 32 | 29, 25, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 29 | adantr 276 |
. . . . . . . 8
|
| 35 | elpm2r 6725 |
. . . . . . . . . . . . 13
| |
| 36 | 18, 7, 1, 3, 35 | syl22anc 1250 |
. . . . . . . . . . . 12
|
| 37 | dvfgg 14924 |
. . . . . . . . . . . 12
| |
| 38 | 7, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
|
| 39 | ffun 5410 |
. . . . . . . . . . 11
| |
| 40 | funfvbrb 5675 |
. . . . . . . . . . 11
| |
| 41 | 38, 39, 40 | 3syl 17 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | 11, 42 | mpbid 147 |
. . . . . . . 8
|
| 44 | elpm2r 6725 |
. . . . . . . . . . . . 13
| |
| 45 | 18, 7, 5, 3, 44 | syl22anc 1250 |
. . . . . . . . . . . 12
|
| 46 | dvfgg 14924 |
. . . . . . . . . . . 12
| |
| 47 | 7, 45, 46 | syl2anc 411 |
. . . . . . . . . . 11
|
| 48 | ffun 5410 |
. . . . . . . . . . 11
| |
| 49 | funfvbrb 5675 |
. . . . . . . . . . 11
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 14, 51 | mpbid 147 |
. . . . . . . 8
|
| 53 | eqid 2196 |
. . . . . . . 8
| |
| 54 | 2, 4, 6, 34, 43, 52, 53 | dvmulxxbr 14938 |
. . . . . . 7
|
| 55 | releldm 4901 |
. . . . . . 7
| |
| 56 | 33, 54, 55 | syl2anc 411 |
. . . . . 6
|
| 57 | 30, 56 | eqelssd 3202 |
. . . . 5
|
| 58 | 57 | feq2d 5395 |
. . . 4
|
| 59 | 27, 58 | mpbid 147 |
. . 3
|
| 60 | 59 | feqmptd 5614 |
. 2
|
| 61 | 9 | feq2d 5395 |
. . . . . 6
|
| 62 | 38, 61 | mpbid 147 |
. . . . 5
|
| 63 | 62 | ffvelcdmda 5697 |
. . . 4
|
| 64 | 5 | ffvelcdmda 5697 |
. . . 4
|
| 65 | 63, 64 | mulcld 8047 |
. . 3
|
| 66 | 12 | feq2d 5395 |
. . . . . 6
|
| 67 | 47, 66 | mpbid 147 |
. . . . 5
|
| 68 | 67 | ffvelcdmda 5697 |
. . . 4
|
| 69 | 1 | ffvelcdmda 5697 |
. . . 4
|
| 70 | 68, 69 | mulcld 8047 |
. . 3
|
| 71 | 62 | feqmptd 5614 |
. . . 4
|
| 72 | 5 | feqmptd 5614 |
. . . 4
|
| 73 | 21, 63, 64, 71, 72 | offval2 6151 |
. . 3
|
| 74 | 67 | feqmptd 5614 |
. . . 4
|
| 75 | 1 | feqmptd 5614 |
. . . 4
|
| 76 | 21, 68, 69, 74, 75 | offval2 6151 |
. . 3
|
| 77 | 21, 65, 70, 73, 76 | offval2 6151 |
. 2
|
| 78 | 16, 60, 77 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pm 6710 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 |
| This theorem is referenced by: dvexp 14947 dvmptmulx 14956 |
| Copyright terms: Public domain | W3C validator |