| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvimulf | Unicode version | ||
| Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s |
|
| dviaddf.x |
|
| dvaddf.f |
|
| dvaddf.g |
|
| dvaddf.df |
|
| dvaddf.dg |
|
| Ref | Expression |
|---|---|
| dvimulf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.f |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | dviaddf.x |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | dvaddf.g |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | dvaddf.s |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | dvaddf.df |
. . . . . 6
| |
| 10 | 9 | eleq2d 2299 |
. . . . 5
|
| 11 | 10 | biimpar 297 |
. . . 4
|
| 12 | dvaddf.dg |
. . . . . 6
| |
| 13 | 12 | eleq2d 2299 |
. . . . 5
|
| 14 | 13 | biimpar 297 |
. . . 4
|
| 15 | 2, 4, 6, 8, 11, 14 | dvmulxx 15386 |
. . 3
|
| 16 | 15 | mpteq2dva 4174 |
. 2
|
| 17 | cnex 8131 |
. . . . . . 7
| |
| 18 | 17 | a1i 9 |
. . . . . 6
|
| 19 | mulcl 8134 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 7, 3 | ssexd 4224 |
. . . . . . 7
|
| 22 | inidm 3413 |
. . . . . . 7
| |
| 23 | 20, 1, 5, 21, 21, 22 | off 6237 |
. . . . . 6
|
| 24 | elpm2r 6821 |
. . . . . 6
| |
| 25 | 18, 7, 23, 3, 24 | syl22anc 1272 |
. . . . 5
|
| 26 | dvfgg 15370 |
. . . . 5
| |
| 27 | 7, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | recnprss 15369 |
. . . . . . . 8
| |
| 29 | 7, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29, 23, 3 | dvbss 15367 |
. . . . . 6
|
| 31 | reldvg 15361 |
. . . . . . . . 9
| |
| 32 | 29, 25, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 29 | adantr 276 |
. . . . . . . 8
|
| 35 | elpm2r 6821 |
. . . . . . . . . . . . 13
| |
| 36 | 18, 7, 1, 3, 35 | syl22anc 1272 |
. . . . . . . . . . . 12
|
| 37 | dvfgg 15370 |
. . . . . . . . . . . 12
| |
| 38 | 7, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
|
| 39 | ffun 5476 |
. . . . . . . . . . 11
| |
| 40 | funfvbrb 5750 |
. . . . . . . . . . 11
| |
| 41 | 38, 39, 40 | 3syl 17 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | 11, 42 | mpbid 147 |
. . . . . . . 8
|
| 44 | elpm2r 6821 |
. . . . . . . . . . . . 13
| |
| 45 | 18, 7, 5, 3, 44 | syl22anc 1272 |
. . . . . . . . . . . 12
|
| 46 | dvfgg 15370 |
. . . . . . . . . . . 12
| |
| 47 | 7, 45, 46 | syl2anc 411 |
. . . . . . . . . . 11
|
| 48 | ffun 5476 |
. . . . . . . . . . 11
| |
| 49 | funfvbrb 5750 |
. . . . . . . . . . 11
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 14, 51 | mpbid 147 |
. . . . . . . 8
|
| 53 | eqid 2229 |
. . . . . . . 8
| |
| 54 | 2, 4, 6, 34, 43, 52, 53 | dvmulxxbr 15384 |
. . . . . . 7
|
| 55 | releldm 4959 |
. . . . . . 7
| |
| 56 | 33, 54, 55 | syl2anc 411 |
. . . . . 6
|
| 57 | 30, 56 | eqelssd 3243 |
. . . . 5
|
| 58 | 57 | feq2d 5461 |
. . . 4
|
| 59 | 27, 58 | mpbid 147 |
. . 3
|
| 60 | 59 | feqmptd 5689 |
. 2
|
| 61 | 9 | feq2d 5461 |
. . . . . 6
|
| 62 | 38, 61 | mpbid 147 |
. . . . 5
|
| 63 | 62 | ffvelcdmda 5772 |
. . . 4
|
| 64 | 5 | ffvelcdmda 5772 |
. . . 4
|
| 65 | 63, 64 | mulcld 8175 |
. . 3
|
| 66 | 12 | feq2d 5461 |
. . . . . 6
|
| 67 | 47, 66 | mpbid 147 |
. . . . 5
|
| 68 | 67 | ffvelcdmda 5772 |
. . . 4
|
| 69 | 1 | ffvelcdmda 5772 |
. . . 4
|
| 70 | 68, 69 | mulcld 8175 |
. . 3
|
| 71 | 62 | feqmptd 5689 |
. . . 4
|
| 72 | 5 | feqmptd 5689 |
. . . 4
|
| 73 | 21, 63, 64, 71, 72 | offval2 6240 |
. . 3
|
| 74 | 67 | feqmptd 5689 |
. . . 4
|
| 75 | 1 | feqmptd 5689 |
. . . 4
|
| 76 | 21, 68, 69, 74, 75 | offval2 6240 |
. . 3
|
| 77 | 21, 65, 70, 73, 76 | offval2 6240 |
. 2
|
| 78 | 16, 60, 77 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-pm 6806 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-ntr 14778 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 df-limced 15338 df-dvap 15339 |
| This theorem is referenced by: dvexp 15393 dvmptmulx 15402 |
| Copyright terms: Public domain | W3C validator |