ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf Unicode version

Theorem dvimulf 14942
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dvimulf  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )

Proof of Theorem dvimulf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5  |-  ( ph  ->  F : X --> CC )
21adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
3 dviaddf.x . . . . 5  |-  ( ph  ->  X  C_  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
5 dvaddf.g . . . . 5  |-  ( ph  ->  G : X --> CC )
65adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
7 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
87adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
9 dvaddf.df . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
109eleq2d 2266 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
1110biimpar 297 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
12 dvaddf.dg . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
1312eleq2d 2266 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
1413biimpar 297 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
152, 4, 6, 8, 11, 14dvmulxx 14940 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  x.  G
) ) `  x
)  =  ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
1615mpteq2dva 4123 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G ) ) `  x ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
17 cnex 8003 . . . . . . 7  |-  CC  e.  _V
1817a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
19 mulcl 8006 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2019adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
217, 3ssexd 4173 . . . . . . 7  |-  ( ph  ->  X  e.  _V )
22 inidm 3372 . . . . . . 7  |-  ( X  i^i  X )  =  X
2320, 1, 5, 21, 21, 22off 6148 . . . . . 6  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
24 elpm2r 6725 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  x.  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
2518, 7, 23, 3, 24syl22anc 1250 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
26 dvfgg 14924 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC )
277, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
28 recnprss 14923 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
297, 28syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3029, 23, 3dvbss 14921 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  C_  X )
31 reldvg 14915 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3229, 25, 31syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3332adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  x.  G
) ) )
3429adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
35 elpm2r 6725 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
3618, 7, 1, 3, 35syl22anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
37 dvfgg 14924 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
387, 36, 37syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
39 ffun 5410 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
40 funfvbrb 5675 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4138, 39, 403syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4241adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4311, 42mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
44 elpm2r 6725 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
4518, 7, 5, 3, 44syl22anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
46 dvfgg 14924 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
477, 45, 46syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
48 ffun 5410 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
49 funfvbrb 5675 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5047, 48, 493syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5150adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5214, 51mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
53 eqid 2196 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
542, 4, 6, 34, 43, 52, 53dvmulxxbr 14938 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
55 releldm 4901 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  x.  G ) )  /\  x ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
)  +  ( ( ( S  _D  G
) `  x )  x.  ( F `  x
) ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G
) ) )
5633, 54, 55syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G ) ) )
5730, 56eqelssd 3202 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  =  X )
5857feq2d 5395 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC  <->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC ) )
5927, 58mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC )
6059feqmptd 5614 . 2  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G
) ) `  x
) ) )
619feq2d 5395 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6238, 61mpbid 147 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6362ffvelcdmda 5697 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  CC )
645ffvelcdmda 5697 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  CC )
6563, 64mulcld 8047 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  e.  CC )
6612feq2d 5395 . . . . . 6  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
6747, 66mpbid 147 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
6867ffvelcdmda 5697 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  e.  CC )
691ffvelcdmda 5697 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  CC )
7068, 69mulcld 8047 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  G ) `  x
)  x.  ( F `
 x ) )  e.  CC )
7162feqmptd 5614 . . . 4  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
725feqmptd 5614 . . . 4  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
7321, 63, 64, 71, 72offval2 6151 . . 3  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  G )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
) ) )
7467feqmptd 5614 . . . 4  |-  ( ph  ->  ( S  _D  G
)  =  ( x  e.  X  |->  ( ( S  _D  G ) `
 x ) ) )
751feqmptd 5614 . . . 4  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
7621, 68, 69, 74, 75offval2 6151 . . 3  |-  ( ph  ->  ( ( S  _D  G )  oF  x.  F )  =  ( x  e.  X  |->  ( ( ( S  _D  G ) `  x )  x.  ( F `  x )
) ) )
7721, 65, 70, 73, 76offval2 6151 . 2  |-  ( ph  ->  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G
)  oF  x.  F ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
7816, 60, 773eqtr4d 2239 1  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {cpr 3623   class class class wbr 4033    |-> cmpt 4094   dom cdm 4663    o. ccom 4667   Rel wrel 4668   Fun wfun 5252   -->wf 5254   ` cfv 5258  (class class class)co 5922    oFcof 6133    ^pm cpm 6708   CCcc 7877   RRcr 7878    + caddc 7882    x. cmul 7884    - cmin 8197   abscabs 11162   MetOpencmopn 14097    _D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  dvexp  14947  dvmptmulx  14956
  Copyright terms: Public domain W3C validator