ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvimulf Unicode version

Theorem dvimulf 14655
Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dvimulf  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )

Proof of Theorem dvimulf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvaddf.f . . . . 5  |-  ( ph  ->  F : X --> CC )
21adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
3 dviaddf.x . . . . 5  |-  ( ph  ->  X  C_  S )
43adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
5 dvaddf.g . . . . 5  |-  ( ph  ->  G : X --> CC )
65adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
7 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
87adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
9 dvaddf.df . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
109eleq2d 2259 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
1110biimpar 297 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
12 dvaddf.dg . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
1312eleq2d 2259 . . . . 5  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
1413biimpar 297 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
152, 4, 6, 8, 11, 14dvmulxx 14653 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  x.  G
) ) `  x
)  =  ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
1615mpteq2dva 4111 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G ) ) `  x ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
17 cnex 7970 . . . . . . 7  |-  CC  e.  _V
1817a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
19 mulcl 7973 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
2019adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
217, 3ssexd 4161 . . . . . . 7  |-  ( ph  ->  X  e.  _V )
22 inidm 3359 . . . . . . 7  |-  ( X  i^i  X )  =  X
2320, 1, 5, 21, 21, 22off 6123 . . . . . 6  |-  ( ph  ->  ( F  oF  x.  G ) : X --> CC )
24 elpm2r 6696 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  x.  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
2518, 7, 23, 3, 24syl22anc 1250 . . . . 5  |-  ( ph  ->  ( F  oF  x.  G )  e.  ( CC  ^pm  S
) )
26 dvfgg 14642 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC )
277, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : dom  ( S  _D  ( F  oF  x.  G
) ) --> CC )
28 recnprss 14641 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
297, 28syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3029, 23, 3dvbss 14639 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  C_  X )
31 reldvg 14633 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  x.  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3229, 25, 31syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  x.  G ) ) )
3332adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  x.  G
) ) )
3429adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
35 elpm2r 6696 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
3618, 7, 1, 3, 35syl22anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
37 dvfgg 14642 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
387, 36, 37syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
39 ffun 5390 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
40 funfvbrb 5653 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4138, 39, 403syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4241adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4311, 42mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
44 elpm2r 6696 . . . . . . . . . . . . 13  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
4518, 7, 5, 3, 44syl22anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
46 dvfgg 14642 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
477, 45, 46syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
48 ffun 5390 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
49 funfvbrb 5653 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5047, 48, 493syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5150adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5214, 51mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
53 eqid 2189 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
542, 4, 6, 34, 43, 52, 53dvmulxxbr 14651 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  x.  G
) ) ( ( ( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  +  ( ( ( S  _D  G ) `
 x )  x.  ( F `  x
) ) ) )
55 releldm 4883 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  x.  G ) )  /\  x ( S  _D  ( F  oF  x.  G ) ) ( ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
)  +  ( ( ( S  _D  G
) `  x )  x.  ( F `  x
) ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G
) ) )
5633, 54, 55syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  x.  G ) ) )
5730, 56eqelssd 3189 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  x.  G ) )  =  X )
5857feq2d 5375 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) : dom  ( S  _D  ( F  oF  x.  G ) ) --> CC  <->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC ) )
5927, 58mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) ) : X --> CC )
6059feqmptd 5593 . 2  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( x  e.  X  |->  ( ( S  _D  ( F  oF  x.  G
) ) `  x
) ) )
619feq2d 5375 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6238, 61mpbid 147 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6362ffvelcdmda 5675 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  CC )
645ffvelcdmda 5675 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( G `  x )  e.  CC )
6563, 64mulcld 8013 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  ( G `
 x ) )  e.  CC )
6612feq2d 5375 . . . . . 6  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
6747, 66mpbid 147 . . . . 5  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
6867ffvelcdmda 5675 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  e.  CC )
691ffvelcdmda 5675 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  CC )
7068, 69mulcld 8013 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  G ) `  x
)  x.  ( F `
 x ) )  e.  CC )
7162feqmptd 5593 . . . 4  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
725feqmptd 5593 . . . 4  |-  ( ph  ->  G  =  ( x  e.  X  |->  ( G `
 x ) ) )
7321, 63, 64, 71, 72offval2 6126 . . 3  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  G )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `  x )  x.  ( G `  x )
) ) )
7467feqmptd 5593 . . . 4  |-  ( ph  ->  ( S  _D  G
)  =  ( x  e.  X  |->  ( ( S  _D  G ) `
 x ) ) )
751feqmptd 5593 . . . 4  |-  ( ph  ->  F  =  ( x  e.  X  |->  ( F `
 x ) ) )
7621, 68, 69, 74, 75offval2 6126 . . 3  |-  ( ph  ->  ( ( S  _D  G )  oF  x.  F )  =  ( x  e.  X  |->  ( ( ( S  _D  G ) `  x )  x.  ( F `  x )
) ) )
7721, 65, 70, 73, 76offval2 6126 . 2  |-  ( ph  ->  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G
)  oF  x.  F ) )  =  ( x  e.  X  |->  ( ( ( ( S  _D  F ) `
 x )  x.  ( G `  x
) )  +  ( ( ( S  _D  G ) `  x
)  x.  ( F `
 x ) ) ) ) )
7816, 60, 773eqtr4d 2232 1  |-  ( ph  ->  ( S  _D  ( F  oF  x.  G
) )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  ( ( S  _D  G )  oF  x.  F
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752    C_ wss 3144   {cpr 3611   class class class wbr 4021    |-> cmpt 4082   dom cdm 4647    o. ccom 4651   Rel wrel 4652   Fun wfun 5232   -->wf 5234   ` cfv 5238  (class class class)co 5900    oFcof 6108    ^pm cpm 6679   CCcc 7844   RRcr 7845    + caddc 7849    x. cmul 7851    - cmin 8163   abscabs 11047   MetOpencmopn 13879    _D cdv 14609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966  ax-addf 7968  ax-mulf 7969
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-isom 5247  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-of 6110  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-map 6680  df-pm 6681  df-sup 7017  df-inf 7018  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-xneg 9808  df-xadd 9809  df-seqfrec 10485  df-exp 10560  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-rest 12757  df-topgen 12776  df-psmet 13881  df-xmet 13882  df-met 13883  df-bl 13884  df-mopn 13885  df-top 13983  df-topon 13996  df-bases 14028  df-ntr 14081  df-cn 14173  df-cnp 14174  df-tx 14238  df-cncf 14543  df-limced 14610  df-dvap 14611
This theorem is referenced by:  dvexp  14660  dvmptmulx  14667
  Copyright terms: Public domain W3C validator