| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvimulf | Unicode version | ||
| Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s |
|
| dviaddf.x |
|
| dvaddf.f |
|
| dvaddf.g |
|
| dvaddf.df |
|
| dvaddf.dg |
|
| Ref | Expression |
|---|---|
| dvimulf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvaddf.f |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | dviaddf.x |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | dvaddf.g |
. . . . 5
| |
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | dvaddf.s |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | dvaddf.df |
. . . . . 6
| |
| 10 | 9 | eleq2d 2299 |
. . . . 5
|
| 11 | 10 | biimpar 297 |
. . . 4
|
| 12 | dvaddf.dg |
. . . . . 6
| |
| 13 | 12 | eleq2d 2299 |
. . . . 5
|
| 14 | 13 | biimpar 297 |
. . . 4
|
| 15 | 2, 4, 6, 8, 11, 14 | dvmulxx 15363 |
. . 3
|
| 16 | 15 | mpteq2dva 4173 |
. 2
|
| 17 | cnex 8111 |
. . . . . . 7
| |
| 18 | 17 | a1i 9 |
. . . . . 6
|
| 19 | mulcl 8114 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 7, 3 | ssexd 4223 |
. . . . . . 7
|
| 22 | inidm 3413 |
. . . . . . 7
| |
| 23 | 20, 1, 5, 21, 21, 22 | off 6221 |
. . . . . 6
|
| 24 | elpm2r 6803 |
. . . . . 6
| |
| 25 | 18, 7, 23, 3, 24 | syl22anc 1272 |
. . . . 5
|
| 26 | dvfgg 15347 |
. . . . 5
| |
| 27 | 7, 25, 26 | syl2anc 411 |
. . . 4
|
| 28 | recnprss 15346 |
. . . . . . . 8
| |
| 29 | 7, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29, 23, 3 | dvbss 15344 |
. . . . . 6
|
| 31 | reldvg 15338 |
. . . . . . . . 9
| |
| 32 | 29, 25, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | adantr 276 |
. . . . . . 7
|
| 34 | 29 | adantr 276 |
. . . . . . . 8
|
| 35 | elpm2r 6803 |
. . . . . . . . . . . . 13
| |
| 36 | 18, 7, 1, 3, 35 | syl22anc 1272 |
. . . . . . . . . . . 12
|
| 37 | dvfgg 15347 |
. . . . . . . . . . . 12
| |
| 38 | 7, 36, 37 | syl2anc 411 |
. . . . . . . . . . 11
|
| 39 | ffun 5472 |
. . . . . . . . . . 11
| |
| 40 | funfvbrb 5741 |
. . . . . . . . . . 11
| |
| 41 | 38, 39, 40 | 3syl 17 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | 11, 42 | mpbid 147 |
. . . . . . . 8
|
| 44 | elpm2r 6803 |
. . . . . . . . . . . . 13
| |
| 45 | 18, 7, 5, 3, 44 | syl22anc 1272 |
. . . . . . . . . . . 12
|
| 46 | dvfgg 15347 |
. . . . . . . . . . . 12
| |
| 47 | 7, 45, 46 | syl2anc 411 |
. . . . . . . . . . 11
|
| 48 | ffun 5472 |
. . . . . . . . . . 11
| |
| 49 | funfvbrb 5741 |
. . . . . . . . . . 11
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . . . . . . . 10
|
| 51 | 50 | adantr 276 |
. . . . . . . . 9
|
| 52 | 14, 51 | mpbid 147 |
. . . . . . . 8
|
| 53 | eqid 2229 |
. . . . . . . 8
| |
| 54 | 2, 4, 6, 34, 43, 52, 53 | dvmulxxbr 15361 |
. . . . . . 7
|
| 55 | releldm 4955 |
. . . . . . 7
| |
| 56 | 33, 54, 55 | syl2anc 411 |
. . . . . 6
|
| 57 | 30, 56 | eqelssd 3243 |
. . . . 5
|
| 58 | 57 | feq2d 5457 |
. . . 4
|
| 59 | 27, 58 | mpbid 147 |
. . 3
|
| 60 | 59 | feqmptd 5680 |
. 2
|
| 61 | 9 | feq2d 5457 |
. . . . . 6
|
| 62 | 38, 61 | mpbid 147 |
. . . . 5
|
| 63 | 62 | ffvelcdmda 5763 |
. . . 4
|
| 64 | 5 | ffvelcdmda 5763 |
. . . 4
|
| 65 | 63, 64 | mulcld 8155 |
. . 3
|
| 66 | 12 | feq2d 5457 |
. . . . . 6
|
| 67 | 47, 66 | mpbid 147 |
. . . . 5
|
| 68 | 67 | ffvelcdmda 5763 |
. . . 4
|
| 69 | 1 | ffvelcdmda 5763 |
. . . 4
|
| 70 | 68, 69 | mulcld 8155 |
. . 3
|
| 71 | 62 | feqmptd 5680 |
. . . 4
|
| 72 | 5 | feqmptd 5680 |
. . . 4
|
| 73 | 21, 63, 64, 71, 72 | offval2 6224 |
. . 3
|
| 74 | 67 | feqmptd 5680 |
. . . 4
|
| 75 | 1 | feqmptd 5680 |
. . . 4
|
| 76 | 21, 68, 69, 74, 75 | offval2 6224 |
. . 3
|
| 77 | 21, 65, 70, 73, 76 | offval2 6224 |
. 2
|
| 78 | 16, 60, 77 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-map 6787 df-pm 6788 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-cn 14847 df-cnp 14848 df-tx 14912 df-cncf 15230 df-limced 15315 df-dvap 15316 |
| This theorem is referenced by: dvexp 15370 dvmptmulx 15379 |
| Copyright terms: Public domain | W3C validator |