ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf Unicode version

Theorem dviaddf 15210
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dviaddf  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) )  =  ( ( S  _D  F
)  oF  +  ( S  _D  G
) ) )

Proof of Theorem dviaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 8052 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 277 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
4 cnex 8051 . . . . . . 7  |-  CC  e.  _V
54a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
6 dvaddf.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dviaddf.x . . . . . 6  |-  ( ph  ->  X  C_  S )
8 elpm2r 6755 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
95, 3, 6, 7, 8syl22anc 1251 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
10 dvfgg 15193 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
113, 9, 10syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
12 dvaddf.df . . . . 5  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
1312feq2d 5415 . . . 4  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
1411, 13mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
15 dvaddf.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
16 elpm2r 6755 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
175, 3, 15, 7, 16syl22anc 1251 . . . . 5  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
18 dvfgg 15193 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
193, 17, 18syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
20 dvaddf.dg . . . . 5  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
2120feq2d 5415 . . . 4  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
2219, 21mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
233, 7ssexd 4185 . . 3  |-  ( ph  ->  X  e.  _V )
24 inidm 3382 . . 3  |-  ( X  i^i  X )  =  X
252, 6, 15, 23, 23, 24off 6173 . . . . . 6  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
26 elpm2r 6755 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  +  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  +  G )  e.  ( CC  ^pm  S
) )
275, 3, 25, 7, 26syl22anc 1251 . . . . 5  |-  ( ph  ->  ( F  oF  +  G )  e.  ( CC  ^pm  S
) )
28 dvfgg 15193 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC )
293, 27, 28syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : dom  ( S  _D  ( F  oF  +  G
) ) --> CC )
30 recnprss 15192 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
313, 30syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3231, 25, 7dvbss 15190 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  +  G ) )  C_  X )
33 reldvg 15184 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  +  G ) ) )
3431, 27, 33syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  +  G ) ) )
3534adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  +  G
) ) )
366adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
377adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
3815adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
3931adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
4012eleq2d 2275 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
4140biimpar 297 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
42 ffun 5430 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
43 funfvbrb 5695 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4411, 42, 433syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4544adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4641, 45mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
4720eleq2d 2275 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
4847biimpar 297 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
49 ffun 5430 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
50 funfvbrb 5695 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5119, 49, 503syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5251adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5348, 52mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
54 eqid 2205 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 15206 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  +  G
) ) ( ( ( S  _D  F
) `  x )  +  ( ( S  _D  G ) `  x ) ) )
56 releldm 4914 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  +  G ) )  /\  x ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  x
)  +  ( ( S  _D  G ) `
 x ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  +  G
) ) )
5735, 55, 56syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  +  G ) ) )
5832, 57eqelssd 3212 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  +  G ) )  =  X )
5958feq2d 5415 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC  <->  ( S  _D  ( F  oF  +  G
) ) : X --> CC ) )
6029, 59mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : X --> CC )
61 eqidd 2206 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( S  _D  F ) `  x ) )
62 eqidd 2206 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  =  ( ( S  _D  G ) `  x ) )
633adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
6436, 37, 38, 63, 41, 48dvaddxx 15208 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  +  G
) ) `  x
)  =  ( ( ( S  _D  F
) `  x )  +  ( ( S  _D  G ) `  x ) ) )
6564eqcomd 2211 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  +  ( ( S  _D  G ) `
 x ) )  =  ( ( S  _D  ( F  oF  +  G )
) `  x )
)
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6174 . 2  |-  ( ph  ->  ( ( S  _D  F )  oF  +  ( S  _D  G ) )  =  ( S  _D  ( F  oF  +  G
) ) )
6766eqcomd 2211 1  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) )  =  ( ( S  _D  F
)  oF  +  ( S  _D  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {cpr 3634   class class class wbr 4045   dom cdm 4676    o. ccom 4680   Rel wrel 4681   Fun wfun 5266   -->wf 5268   ` cfv 5272  (class class class)co 5946    oFcof 6158    ^pm cpm 6738   CCcc 7925   RRcr 7926    + caddc 7930    - cmin 8245   abscabs 11341   MetOpencmopn 14336    _D cdv 15160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-addf 8049
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-pm 6740  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-limced 15161  df-dvap 15162
This theorem is referenced by:  dvmptaddx  15224
  Copyright terms: Public domain W3C validator