ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf Unicode version

Theorem dviaddf 13463
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dviaddf  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) )  =  ( ( S  _D  F
)  oF  +  ( S  _D  G
) ) )

Proof of Theorem dviaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7899 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 275 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
4 cnex 7898 . . . . . . 7  |-  CC  e.  _V
54a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
6 dvaddf.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dviaddf.x . . . . . 6  |-  ( ph  ->  X  C_  S )
8 elpm2r 6644 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
95, 3, 6, 7, 8syl22anc 1234 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
10 dvfgg 13451 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
113, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
12 dvaddf.df . . . . 5  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
1312feq2d 5335 . . . 4  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
1411, 13mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
15 dvaddf.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
16 elpm2r 6644 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
175, 3, 15, 7, 16syl22anc 1234 . . . . 5  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
18 dvfgg 13451 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
193, 17, 18syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
20 dvaddf.dg . . . . 5  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
2120feq2d 5335 . . . 4  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
2219, 21mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
233, 7ssexd 4129 . . 3  |-  ( ph  ->  X  e.  _V )
24 inidm 3336 . . 3  |-  ( X  i^i  X )  =  X
252, 6, 15, 23, 23, 24off 6073 . . . . . 6  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
26 elpm2r 6644 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  +  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  +  G )  e.  ( CC  ^pm  S
) )
275, 3, 25, 7, 26syl22anc 1234 . . . . 5  |-  ( ph  ->  ( F  oF  +  G )  e.  ( CC  ^pm  S
) )
28 dvfgg 13451 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC )
293, 27, 28syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : dom  ( S  _D  ( F  oF  +  G
) ) --> CC )
30 recnprss 13450 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
313, 30syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3231, 25, 7dvbss 13448 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  +  G ) )  C_  X )
33 reldvg 13442 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  +  G ) ) )
3431, 27, 33syl2anc 409 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  +  G ) ) )
3534adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  +  G
) ) )
366adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
377adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
3815adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
3931adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
4012eleq2d 2240 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
4140biimpar 295 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
42 ffun 5350 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
43 funfvbrb 5609 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4411, 42, 433syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4544adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4641, 45mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
4720eleq2d 2240 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
4847biimpar 295 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
49 ffun 5350 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
50 funfvbrb 5609 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5119, 49, 503syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5251adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5348, 52mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
54 eqid 2170 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 13459 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  +  G
) ) ( ( ( S  _D  F
) `  x )  +  ( ( S  _D  G ) `  x ) ) )
56 releldm 4846 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  +  G ) )  /\  x ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  x
)  +  ( ( S  _D  G ) `
 x ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  +  G
) ) )
5735, 55, 56syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  +  G ) ) )
5832, 57eqelssd 3166 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  +  G ) )  =  X )
5958feq2d 5335 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC  <->  ( S  _D  ( F  oF  +  G
) ) : X --> CC ) )
6029, 59mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : X --> CC )
61 eqidd 2171 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( S  _D  F ) `  x ) )
62 eqidd 2171 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  =  ( ( S  _D  G ) `  x ) )
633adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
6436, 37, 38, 63, 41, 48dvaddxx 13461 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  +  G
) ) `  x
)  =  ( ( ( S  _D  F
) `  x )  +  ( ( S  _D  G ) `  x ) ) )
6564eqcomd 2176 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  +  ( ( S  _D  G ) `
 x ) )  =  ( ( S  _D  ( F  oF  +  G )
) `  x )
)
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6074 . 2  |-  ( ph  ->  ( ( S  _D  F )  oF  +  ( S  _D  G ) )  =  ( S  _D  ( F  oF  +  G
) ) )
6766eqcomd 2176 1  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) )  =  ( ( S  _D  F
)  oF  +  ( S  _D  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   {cpr 3584   class class class wbr 3989   dom cdm 4611    o. ccom 4615   Rel wrel 4616   Fun wfun 5192   -->wf 5194   ` cfv 5198  (class class class)co 5853    oFcof 6059    ^pm cpm 6627   CCcc 7772   RRcr 7773    + caddc 7777    - cmin 8090   abscabs 10961   MetOpencmopn 12779    _D cdv 13418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-addf 7896
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pm 6629  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-limced 13419  df-dvap 13420
This theorem is referenced by:  dvmptaddx  13475
  Copyright terms: Public domain W3C validator