ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dviaddf Unicode version

Theorem dviaddf 13040
Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvaddf.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dviaddf.x  |-  ( ph  ->  X  C_  S )
dvaddf.f  |-  ( ph  ->  F : X --> CC )
dvaddf.g  |-  ( ph  ->  G : X --> CC )
dvaddf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
dvaddf.dg  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
Assertion
Ref Expression
dviaddf  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) )  =  ( ( S  _D  F
)  oF  +  ( S  _D  G
) ) )

Proof of Theorem dviaddf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7851 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 275 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 dvaddf.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
4 cnex 7850 . . . . . . 7  |-  CC  e.  _V
54a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
6 dvaddf.f . . . . . 6  |-  ( ph  ->  F : X --> CC )
7 dviaddf.x . . . . . 6  |-  ( ph  ->  X  C_  S )
8 elpm2r 6608 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : X --> CC  /\  X  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
95, 3, 6, 7, 8syl22anc 1221 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
10 dvfgg 13028 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
113, 9, 10syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
12 dvaddf.df . . . . 5  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
1312feq2d 5306 . . . 4  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
1411, 13mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
15 dvaddf.g . . . . . 6  |-  ( ph  ->  G : X --> CC )
16 elpm2r 6608 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( G : X --> CC  /\  X  C_  S ) )  ->  G  e.  ( CC  ^pm  S )
)
175, 3, 15, 7, 16syl22anc 1221 . . . . 5  |-  ( ph  ->  G  e.  ( CC 
^pm  S ) )
18 dvfgg 13028 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  G  e.  ( CC  ^pm  S
) )  ->  ( S  _D  G ) : dom  ( S  _D  G ) --> CC )
193, 17, 18syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
20 dvaddf.dg . . . . 5  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
2120feq2d 5306 . . . 4  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
2219, 21mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
233, 7ssexd 4104 . . 3  |-  ( ph  ->  X  e.  _V )
24 inidm 3316 . . 3  |-  ( X  i^i  X )  =  X
252, 6, 15, 23, 23, 24off 6041 . . . . . 6  |-  ( ph  ->  ( F  oF  +  G ) : X --> CC )
26 elpm2r 6608 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( ( F  oF  +  G ) : X --> CC  /\  X  C_  S ) )  -> 
( F  oF  +  G )  e.  ( CC  ^pm  S
) )
275, 3, 25, 7, 26syl22anc 1221 . . . . 5  |-  ( ph  ->  ( F  oF  +  G )  e.  ( CC  ^pm  S
) )
28 dvfgg 13028 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC )
293, 27, 28syl2anc 409 . . . 4  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : dom  ( S  _D  ( F  oF  +  G
) ) --> CC )
30 recnprss 13027 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
313, 30syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
3231, 25, 7dvbss 13025 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( F  oF  +  G ) )  C_  X )
33 reldvg 13019 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  ( F  oF  +  G
)  e.  ( CC 
^pm  S ) )  ->  Rel  ( S  _D  ( F  oF  +  G ) ) )
3431, 27, 33syl2anc 409 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  ( F  oF  +  G ) ) )
3534adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  ( F  oF  +  G
) ) )
366adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  F : X --> CC )
377adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  X  C_  S )
3815adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  G : X --> CC )
3931adantr 274 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  S  C_  CC )
4012eleq2d 2227 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x  e.  X
) )
4140biimpar 295 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
42 ffun 5321 . . . . . . . . . . 11  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC 
->  Fun  ( S  _D  F ) )
43 funfvbrb 5579 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  F
)  ->  ( x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4411, 42, 433syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  F
)  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4544adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  F )  <->  x ( S  _D  F ) ( ( S  _D  F
) `  x )
) )
4641, 45mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) ( ( S  _D  F ) `  x ) )
4720eleq2d 2227 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x  e.  X
) )
4847biimpar 295 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  G ) )
49 ffun 5321 . . . . . . . . . . 11  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
50 funfvbrb 5579 . . . . . . . . . . 11  |-  ( Fun  ( S  _D  G
)  ->  ( x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5119, 49, 503syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  dom  ( S  _D  G
)  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5251adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  dom  ( S  _D  G )  <->  x ( S  _D  G ) ( ( S  _D  G
) `  x )
) )
5348, 52mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  G
) ( ( S  _D  G ) `  x ) )
54 eqid 2157 . . . . . . . 8  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
5536, 37, 38, 39, 46, 53, 54dvaddxxbr 13036 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  ( F  oF  +  G
) ) ( ( ( S  _D  F
) `  x )  +  ( ( S  _D  G ) `  x ) ) )
56 releldm 4820 . . . . . . 7  |-  ( ( Rel  ( S  _D  ( F  oF  +  G ) )  /\  x ( S  _D  ( F  oF  +  G ) ) ( ( ( S  _D  F ) `  x
)  +  ( ( S  _D  G ) `
 x ) ) )  ->  x  e.  dom  ( S  _D  ( F  oF  +  G
) ) )
5735, 55, 56syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  ( F  oF  +  G ) ) )
5832, 57eqelssd 3147 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( F  oF  +  G ) )  =  X )
5958feq2d 5306 . . . 4  |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) : dom  ( S  _D  ( F  oF  +  G ) ) --> CC  <->  ( S  _D  ( F  oF  +  G
) ) : X --> CC ) )
6029, 59mpbid 146 . . 3  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) ) : X --> CC )
61 eqidd 2158 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( S  _D  F ) `  x ) )
62 eqidd 2158 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  G
) `  x )  =  ( ( S  _D  G ) `  x ) )
633adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  S  e.  { RR ,  CC } )
6436, 37, 38, 63, 41, 48dvaddxx 13038 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  ( F  oF  +  G
) ) `  x
)  =  ( ( ( S  _D  F
) `  x )  +  ( ( S  _D  G ) `  x ) ) )
6564eqcomd 2163 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  +  ( ( S  _D  G ) `
 x ) )  =  ( ( S  _D  ( F  oF  +  G )
) `  x )
)
662, 14, 22, 23, 23, 24, 60, 61, 62, 65offeq 6042 . 2  |-  ( ph  ->  ( ( S  _D  F )  oF  +  ( S  _D  G ) )  =  ( S  _D  ( F  oF  +  G
) ) )
6766eqcomd 2163 1  |-  ( ph  ->  ( S  _D  ( F  oF  +  G
) )  =  ( ( S  _D  F
)  oF  +  ( S  _D  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   _Vcvv 2712    C_ wss 3102   {cpr 3561   class class class wbr 3965   dom cdm 4585    o. ccom 4589   Rel wrel 4590   Fun wfun 5163   -->wf 5165   ` cfv 5169  (class class class)co 5821    oFcof 6027    ^pm cpm 6591   CCcc 7724   RRcr 7725    + caddc 7729    - cmin 8040   abscabs 10890   MetOpencmopn 12356    _D cdv 12995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846  ax-addf 7848
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-of 6029  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-map 6592  df-pm 6593  df-sup 6924  df-inf 6925  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-xneg 9672  df-xadd 9673  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-rest 12324  df-topgen 12343  df-psmet 12358  df-xmet 12359  df-met 12360  df-bl 12361  df-mopn 12362  df-top 12367  df-topon 12380  df-bases 12412  df-ntr 12467  df-cn 12559  df-cnp 12560  df-tx 12624  df-limced 12996  df-dvap 12997
This theorem is referenced by:  dvmptaddx  13052
  Copyright terms: Public domain W3C validator