| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dviaddf | Unicode version | ||
| Description: The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvaddf.s |
|
| dviaddf.x |
|
| dvaddf.f |
|
| dvaddf.g |
|
| dvaddf.df |
|
| dvaddf.dg |
|
| Ref | Expression |
|---|---|
| dviaddf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8124 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | dvaddf.s |
. . . . 5
| |
| 4 | cnex 8123 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | dvaddf.f |
. . . . . 6
| |
| 7 | dviaddf.x |
. . . . . 6
| |
| 8 | elpm2r 6813 |
. . . . . 6
| |
| 9 | 5, 3, 6, 7, 8 | syl22anc 1272 |
. . . . 5
|
| 10 | dvfgg 15362 |
. . . . 5
| |
| 11 | 3, 9, 10 | syl2anc 411 |
. . . 4
|
| 12 | dvaddf.df |
. . . . 5
| |
| 13 | 12 | feq2d 5461 |
. . . 4
|
| 14 | 11, 13 | mpbid 147 |
. . 3
|
| 15 | dvaddf.g |
. . . . . 6
| |
| 16 | elpm2r 6813 |
. . . . . 6
| |
| 17 | 5, 3, 15, 7, 16 | syl22anc 1272 |
. . . . 5
|
| 18 | dvfgg 15362 |
. . . . 5
| |
| 19 | 3, 17, 18 | syl2anc 411 |
. . . 4
|
| 20 | dvaddf.dg |
. . . . 5
| |
| 21 | 20 | feq2d 5461 |
. . . 4
|
| 22 | 19, 21 | mpbid 147 |
. . 3
|
| 23 | 3, 7 | ssexd 4224 |
. . 3
|
| 24 | inidm 3413 |
. . 3
| |
| 25 | 2, 6, 15, 23, 23, 24 | off 6231 |
. . . . . 6
|
| 26 | elpm2r 6813 |
. . . . . 6
| |
| 27 | 5, 3, 25, 7, 26 | syl22anc 1272 |
. . . . 5
|
| 28 | dvfgg 15362 |
. . . . 5
| |
| 29 | 3, 27, 28 | syl2anc 411 |
. . . 4
|
| 30 | recnprss 15361 |
. . . . . . . 8
| |
| 31 | 3, 30 | syl 14 |
. . . . . . 7
|
| 32 | 31, 25, 7 | dvbss 15359 |
. . . . . 6
|
| 33 | reldvg 15353 |
. . . . . . . . 9
| |
| 34 | 31, 27, 33 | syl2anc 411 |
. . . . . . . 8
|
| 35 | 34 | adantr 276 |
. . . . . . 7
|
| 36 | 6 | adantr 276 |
. . . . . . . 8
|
| 37 | 7 | adantr 276 |
. . . . . . . 8
|
| 38 | 15 | adantr 276 |
. . . . . . . 8
|
| 39 | 31 | adantr 276 |
. . . . . . . 8
|
| 40 | 12 | eleq2d 2299 |
. . . . . . . . . 10
|
| 41 | 40 | biimpar 297 |
. . . . . . . . 9
|
| 42 | ffun 5476 |
. . . . . . . . . . 11
| |
| 43 | funfvbrb 5748 |
. . . . . . . . . . 11
| |
| 44 | 11, 42, 43 | 3syl 17 |
. . . . . . . . . 10
|
| 45 | 44 | adantr 276 |
. . . . . . . . 9
|
| 46 | 41, 45 | mpbid 147 |
. . . . . . . 8
|
| 47 | 20 | eleq2d 2299 |
. . . . . . . . . 10
|
| 48 | 47 | biimpar 297 |
. . . . . . . . 9
|
| 49 | ffun 5476 |
. . . . . . . . . . 11
| |
| 50 | funfvbrb 5748 |
. . . . . . . . . . 11
| |
| 51 | 19, 49, 50 | 3syl 17 |
. . . . . . . . . 10
|
| 52 | 51 | adantr 276 |
. . . . . . . . 9
|
| 53 | 48, 52 | mpbid 147 |
. . . . . . . 8
|
| 54 | eqid 2229 |
. . . . . . . 8
| |
| 55 | 36, 37, 38, 39, 46, 53, 54 | dvaddxxbr 15375 |
. . . . . . 7
|
| 56 | releldm 4959 |
. . . . . . 7
| |
| 57 | 35, 55, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 32, 57 | eqelssd 3243 |
. . . . 5
|
| 59 | 58 | feq2d 5461 |
. . . 4
|
| 60 | 29, 59 | mpbid 147 |
. . 3
|
| 61 | eqidd 2230 |
. . 3
| |
| 62 | eqidd 2230 |
. . 3
| |
| 63 | 3 | adantr 276 |
. . . . 5
|
| 64 | 36, 37, 38, 63, 41, 48 | dvaddxx 15377 |
. . . 4
|
| 65 | 64 | eqcomd 2235 |
. . 3
|
| 66 | 2, 14, 22, 23, 23, 24, 60, 61, 62, 65 | offeq 6232 |
. 2
|
| 67 | 66 | eqcomd 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 ax-addf 8121 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-of 6218 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-map 6797 df-pm 6798 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-xneg 9968 df-xadd 9969 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-rest 13274 df-topgen 13293 df-psmet 14507 df-xmet 14508 df-met 14509 df-bl 14510 df-mopn 14511 df-top 14672 df-topon 14685 df-bases 14717 df-ntr 14770 df-cn 14862 df-cnp 14863 df-tx 14927 df-limced 15330 df-dvap 15331 |
| This theorem is referenced by: dvmptaddx 15393 |
| Copyright terms: Public domain | W3C validator |