ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss GIF version

Theorem recnprss 14923
Description: Both and are subsets of . (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3645 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
2 ax-resscn 7971 . . . 4 ℝ ⊆ ℂ
3 sseq1 3206 . . . 4 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 168 . . 3 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
5 eqimss 3237 . . 3 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
64, 5jaoi 717 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)
71, 6syl 14 1 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2167  wss 3157  {cpr 3623  cc 7877  cr 7878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629
This theorem is referenced by:  dvfgg  14924  dvidsslem  14929  dvconstss  14934  dvaddxx  14939  dvmulxx  14940  dviaddf  14941  dvimulf  14942  dvmptfsum  14961
  Copyright terms: Public domain W3C validator