| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recnprss | GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpri 3645 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 7971 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3206 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 168 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) | 
| 5 | eqimss 3237 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 717 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) | 
| 7 | 1, 6 | syl 14 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 {cpr 3623 ℂcc 7877 ℝcr 7878 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: dvfgg 14924 dvidsslem 14929 dvconstss 14934 dvaddxx 14939 dvmulxx 14940 dviaddf 14941 dvimulf 14942 dvmptfsum 14961 | 
| Copyright terms: Public domain | W3C validator |