| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recnprss | GIF version | ||
| Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 3658 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | ax-resscn 8030 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 3 | sseq1 3218 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
| 4 | 2, 3 | mpbiri 168 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
| 5 | eqimss 3249 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
| 6 | 4, 5 | jaoi 718 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
| 7 | 1, 6 | syl 14 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ⊆ wss 3168 {cpr 3636 ℂcc 7936 ℝcr 7937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8030 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 |
| This theorem is referenced by: dvfgg 15210 dvidsslem 15215 dvconstss 15220 dvaddxx 15225 dvmulxx 15226 dviaddf 15227 dvimulf 15228 dvmptfsum 15247 |
| Copyright terms: Public domain | W3C validator |