ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnprss GIF version

Theorem recnprss 15209
Description: Both and are subsets of . (Contributed by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
recnprss (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)

Proof of Theorem recnprss
StepHypRef Expression
1 elpri 3658 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
2 ax-resscn 8030 . . . 4 ℝ ⊆ ℂ
3 sseq1 3218 . . . 4 (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ))
42, 3mpbiri 168 . . 3 (𝑆 = ℝ → 𝑆 ⊆ ℂ)
5 eqimss 3249 . . 3 (𝑆 = ℂ → 𝑆 ⊆ ℂ)
64, 5jaoi 718 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ)
71, 6syl 14 1 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177  wss 3168  {cpr 3636  cc 7936  cr 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8030
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642
This theorem is referenced by:  dvfgg  15210  dvidsslem  15215  dvconstss  15220  dvaddxx  15225  dvmulxx  15226  dviaddf  15227  dvimulf  15228  dvmptfsum  15247
  Copyright terms: Public domain W3C validator