ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfo2 Unicode version

Theorem tposfo2 6270
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 6269 . . . 4  |-  ( Rel 
A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )
21adantrd 279 . . 3  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  -> tpos  F  Fn  `' A ) )
3 fndm 5317 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
43releqd 4712 . . . . . . . 8  |-  ( F  Fn  A  ->  ( Rel  dom  F  <->  Rel  A ) )
54biimparc 299 . . . . . . 7  |-  ( ( Rel  A  /\  F  Fn  A )  ->  Rel  dom 
F )
6 rntpos 6260 . . . . . . 7  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )
75, 6syl 14 . . . . . 6  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ran tpos  F  =  ran  F )
87eqeq1d 2186 . . . . 5  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ( ran tpos  F  =  B  <->  ran  F  =  B ) )
98biimprd 158 . . . 4  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ( ran  F  =  B  ->  ran tpos  F  =  B ) )
109expimpd 363 . . 3  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ran tpos  F  =  B ) )
112, 10jcad 307 . 2  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  ->  (tpos  F  Fn  `' A  /\  ran tpos  F  =  B ) ) )
12 df-fo 5224 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
13 df-fo 5224 . 2  |-  (tpos  F : `' A -onto-> B  <->  (tpos  F  Fn  `' A  /\  ran tpos  F  =  B ) )
1411, 12, 133imtr4g 205 1  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   `'ccnv 4627   dom cdm 4628   ran crn 4629   Rel wrel 4633    Fn wfn 5213   -onto->wfo 5216  tpos ctpos 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fo 5224  df-fv 5226  df-tpos 6248
This theorem is referenced by:  tposf2  6271  tposf1o2  6273  tposfo  6274
  Copyright terms: Public domain W3C validator