ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfo2 Unicode version

Theorem tposfo2 6322
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 6321 . . . 4  |-  ( Rel 
A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )
21adantrd 279 . . 3  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  -> tpos  F  Fn  `' A ) )
3 fndm 5354 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
43releqd 4744 . . . . . . . 8  |-  ( F  Fn  A  ->  ( Rel  dom  F  <->  Rel  A ) )
54biimparc 299 . . . . . . 7  |-  ( ( Rel  A  /\  F  Fn  A )  ->  Rel  dom 
F )
6 rntpos 6312 . . . . . . 7  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )
75, 6syl 14 . . . . . 6  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ran tpos  F  =  ran  F )
87eqeq1d 2202 . . . . 5  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ( ran tpos  F  =  B  <->  ran  F  =  B ) )
98biimprd 158 . . . 4  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ( ran  F  =  B  ->  ran tpos  F  =  B ) )
109expimpd 363 . . 3  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ran tpos  F  =  B ) )
112, 10jcad 307 . 2  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  ->  (tpos  F  Fn  `' A  /\  ran tpos  F  =  B ) ) )
12 df-fo 5261 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
13 df-fo 5261 . 2  |-  (tpos  F : `' A -onto-> B  <->  (tpos  F  Fn  `' A  /\  ran tpos  F  =  B ) )
1411, 12, 133imtr4g 205 1  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   `'ccnv 4659   dom cdm 4660   ran crn 4661   Rel wrel 4665    Fn wfn 5250   -onto->wfo 5253  tpos ctpos 6299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fo 5261  df-fv 5263  df-tpos 6300
This theorem is referenced by:  tposf2  6323  tposf1o2  6325  tposfo  6326
  Copyright terms: Public domain W3C validator