ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqgg Unicode version

Theorem releqgg 13589
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
releqg.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
releqgg  |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )

Proof of Theorem releqgg
Dummy variables  i  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4805 . 2  |-  Rel  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
2 releqg.r . . . 4  |-  R  =  ( G ~QG  S )
3 elex 2783 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
43adantr 276 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  G  e.  _V )
5 elex 2783 . . . . . 6  |-  ( S  e.  W  ->  S  e.  _V )
65adantl 277 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  S  e.  _V )
7 vex 2775 . . . . . . . . 9  |-  x  e. 
_V
8 vex 2775 . . . . . . . . 9  |-  y  e. 
_V
97, 8prss 3789 . . . . . . . 8  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  <->  { x ,  y }  C_  ( Base `  G )
)
109anbi1i 458 . . . . . . 7  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
)  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
1110opabbii 4112 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
12 basfn 12923 . . . . . . . . 9  |-  Base  Fn  _V
13 funfvex 5595 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5377 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 4, 14sylancr 414 . . . . . . . 8  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Base `  G
)  e.  _V )
16 xpexg 4790 . . . . . . . 8  |-  ( ( ( Base `  G
)  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
( Base `  G )  X.  ( Base `  G
) )  e.  _V )
1715, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( ( Base `  G
)  X.  ( Base `  G ) )  e. 
_V )
18 opabssxp 4750 . . . . . . . 8  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  C_  (
( Base `  G )  X.  ( Base `  G
) )
1918a1i 9 . . . . . . 7  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
2017, 19ssexd 4185 . . . . . 6  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
2111, 20eqeltrrid 2293 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
22 fveq2 5578 . . . . . . . . 9  |-  ( r  =  G  ->  ( Base `  r )  =  ( Base `  G
) )
2322sseq2d 3223 . . . . . . . 8  |-  ( r  =  G  ->  ( { x ,  y }  C_  ( Base `  r )  <->  { x ,  y }  C_  ( Base `  G )
) )
24 fveq2 5578 . . . . . . . . . 10  |-  ( r  =  G  ->  ( +g  `  r )  =  ( +g  `  G
) )
25 fveq2 5578 . . . . . . . . . . 11  |-  ( r  =  G  ->  ( invg `  r )  =  ( invg `  G ) )
2625fveq1d 5580 . . . . . . . . . 10  |-  ( r  =  G  ->  (
( invg `  r ) `  x
)  =  ( ( invg `  G
) `  x )
)
27 eqidd 2206 . . . . . . . . . 10  |-  ( r  =  G  ->  y  =  y )
2824, 26, 27oveq123d 5967 . . . . . . . . 9  |-  ( r  =  G  ->  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) )
2928eleq1d 2274 . . . . . . . 8  |-  ( r  =  G  ->  (
( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) )
3023, 29anbi12d 473 . . . . . . 7  |-  ( r  =  G  ->  (
( { x ,  y }  C_  ( Base `  r )  /\  ( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) ) )
3130opabbidv 4111 . . . . . 6  |-  ( r  =  G  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) } )
32 eleq2 2269 . . . . . . . 8  |-  ( i  =  S  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
3332anbi2d 464 . . . . . . 7  |-  ( i  =  S  ->  (
( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) ) )
3433opabbidv 4111 . . . . . 6  |-  ( i  =  S  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
35 df-eqg 13541 . . . . . 6  |- ~QG  =  ( r  e.  _V ,  i  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
3631, 34, 35ovmpog 6082 . . . . 5  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
374, 6, 21, 36syl3anc 1250 . . . 4  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) } )
382, 37eqtrid 2250 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
3938releqd 4760 . 2  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Rel  R  <->  Rel  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } ) )
401, 39mpbiri 168 1  |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {cpr 3634   {copab 4105    X. cxp 4674   Rel wrel 4681    Fn wfn 5267   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   invgcminusg 13366   ~QG cqg 13538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-inn 9039  df-ndx 12868  df-slot 12869  df-base 12871  df-eqg 13541
This theorem is referenced by:  eqger  13593  eqgid  13595
  Copyright terms: Public domain W3C validator