ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqgg Unicode version

Theorem releqgg 13757
Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypothesis
Ref Expression
releqg.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
releqgg  |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )

Proof of Theorem releqgg
Dummy variables  i  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4848 . 2  |-  Rel  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
2 releqg.r . . . 4  |-  R  =  ( G ~QG  S )
3 elex 2811 . . . . . 6  |-  ( G  e.  V  ->  G  e.  _V )
43adantr 276 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  G  e.  _V )
5 elex 2811 . . . . . 6  |-  ( S  e.  W  ->  S  e.  _V )
65adantl 277 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  S  e.  _V )
7 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
8 vex 2802 . . . . . . . . 9  |-  y  e. 
_V
97, 8prss 3824 . . . . . . . 8  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  <->  { x ,  y }  C_  ( Base `  G )
)
109anbi1i 458 . . . . . . 7  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
)  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
1110opabbii 4151 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
12 basfn 13091 . . . . . . . . 9  |-  Base  Fn  _V
13 funfvex 5644 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1413funfni 5423 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1512, 4, 14sylancr 414 . . . . . . . 8  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Base `  G
)  e.  _V )
16 xpexg 4833 . . . . . . . 8  |-  ( ( ( Base `  G
)  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
( Base `  G )  X.  ( Base `  G
) )  e.  _V )
1715, 15, 16syl2anc 411 . . . . . . 7  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( ( Base `  G
)  X.  ( Base `  G ) )  e. 
_V )
18 opabssxp 4793 . . . . . . . 8  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  C_  (
( Base `  G )  X.  ( Base `  G
) )
1918a1i 9 . . . . . . 7  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
2017, 19ssexd 4224 . . . . . 6  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
2111, 20eqeltrrid 2317 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
22 fveq2 5627 . . . . . . . . 9  |-  ( r  =  G  ->  ( Base `  r )  =  ( Base `  G
) )
2322sseq2d 3254 . . . . . . . 8  |-  ( r  =  G  ->  ( { x ,  y }  C_  ( Base `  r )  <->  { x ,  y }  C_  ( Base `  G )
) )
24 fveq2 5627 . . . . . . . . . 10  |-  ( r  =  G  ->  ( +g  `  r )  =  ( +g  `  G
) )
25 fveq2 5627 . . . . . . . . . . 11  |-  ( r  =  G  ->  ( invg `  r )  =  ( invg `  G ) )
2625fveq1d 5629 . . . . . . . . . 10  |-  ( r  =  G  ->  (
( invg `  r ) `  x
)  =  ( ( invg `  G
) `  x )
)
27 eqidd 2230 . . . . . . . . . 10  |-  ( r  =  G  ->  y  =  y )
2824, 26, 27oveq123d 6022 . . . . . . . . 9  |-  ( r  =  G  ->  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) )
2928eleq1d 2298 . . . . . . . 8  |-  ( r  =  G  ->  (
( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) )
3023, 29anbi12d 473 . . . . . . 7  |-  ( r  =  G  ->  (
( { x ,  y }  C_  ( Base `  r )  /\  ( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) ) )
3130opabbidv 4150 . . . . . 6  |-  ( r  =  G  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) } )
32 eleq2 2293 . . . . . . . 8  |-  ( i  =  S  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
3332anbi2d 464 . . . . . . 7  |-  ( i  =  S  ->  (
( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) ) )
3433opabbidv 4150 . . . . . 6  |-  ( i  =  S  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
35 df-eqg 13709 . . . . . 6  |- ~QG  =  ( r  e.  _V ,  i  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
3631, 34, 35ovmpog 6139 . . . . 5  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
374, 6, 21, 36syl3anc 1271 . . . 4  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) } )
382, 37eqtrid 2274 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
3938releqd 4803 . 2  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Rel  R  <->  Rel  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } ) )
401, 39mpbiri 168 1  |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {cpr 3667   {copab 4144    X. cxp 4717   Rel wrel 4724    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   invgcminusg 13534   ~QG cqg 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-eqg 13709
This theorem is referenced by:  eqger  13761  eqgid  13763
  Copyright terms: Public domain W3C validator