| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releqgg | Unicode version | ||
| Description: The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| releqg.r |
|
| Ref | Expression |
|---|---|
| releqgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4848 |
. 2
| |
| 2 | releqg.r |
. . . 4
| |
| 3 | elex 2811 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | elex 2811 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | vex 2802 |
. . . . . . . . 9
| |
| 8 | vex 2802 |
. . . . . . . . 9
| |
| 9 | 7, 8 | prss 3824 |
. . . . . . . 8
|
| 10 | 9 | anbi1i 458 |
. . . . . . 7
|
| 11 | 10 | opabbii 4151 |
. . . . . 6
|
| 12 | basfn 13091 |
. . . . . . . . 9
| |
| 13 | funfvex 5644 |
. . . . . . . . . 10
| |
| 14 | 13 | funfni 5423 |
. . . . . . . . 9
|
| 15 | 12, 4, 14 | sylancr 414 |
. . . . . . . 8
|
| 16 | xpexg 4833 |
. . . . . . . 8
| |
| 17 | 15, 15, 16 | syl2anc 411 |
. . . . . . 7
|
| 18 | opabssxp 4793 |
. . . . . . . 8
| |
| 19 | 18 | a1i 9 |
. . . . . . 7
|
| 20 | 17, 19 | ssexd 4224 |
. . . . . 6
|
| 21 | 11, 20 | eqeltrrid 2317 |
. . . . 5
|
| 22 | fveq2 5627 |
. . . . . . . . 9
| |
| 23 | 22 | sseq2d 3254 |
. . . . . . . 8
|
| 24 | fveq2 5627 |
. . . . . . . . . 10
| |
| 25 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 26 | 25 | fveq1d 5629 |
. . . . . . . . . 10
|
| 27 | eqidd 2230 |
. . . . . . . . . 10
| |
| 28 | 24, 26, 27 | oveq123d 6022 |
. . . . . . . . 9
|
| 29 | 28 | eleq1d 2298 |
. . . . . . . 8
|
| 30 | 23, 29 | anbi12d 473 |
. . . . . . 7
|
| 31 | 30 | opabbidv 4150 |
. . . . . 6
|
| 32 | eleq2 2293 |
. . . . . . . 8
| |
| 33 | 32 | anbi2d 464 |
. . . . . . 7
|
| 34 | 33 | opabbidv 4150 |
. . . . . 6
|
| 35 | df-eqg 13709 |
. . . . . 6
| |
| 36 | 31, 34, 35 | ovmpog 6139 |
. . . . 5
|
| 37 | 4, 6, 21, 36 | syl3anc 1271 |
. . . 4
|
| 38 | 2, 37 | eqtrid 2274 |
. . 3
|
| 39 | 38 | releqd 4803 |
. 2
|
| 40 | 1, 39 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-eqg 13709 |
| This theorem is referenced by: eqger 13761 eqgid 13763 |
| Copyright terms: Public domain | W3C validator |