ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmreltop Unicode version

Theorem lmreltop 14698
Description: The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.)
Assertion
Ref Expression
lmreltop  |-  ( J  e.  Top  ->  Rel  (
~~> t `  J ) )

Proof of Theorem lmreltop
Dummy variables  f  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4805 . 2  |-  Rel  { <. f ,  x >.  |  ( f  e.  ( U. J  ^pm  CC )  /\  x  e.  U. J  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
2 toptopon2 14524 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
3 lmfval 14697 . . . 4  |-  ( J  e.  (TopOn `  U. J )  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( U. J  ^pm  CC )  /\  x  e. 
U. J  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
42, 3sylbi 121 . . 3  |-  ( J  e.  Top  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( U. J  ^pm  CC )  /\  x  e. 
U. J  /\  A. u  e.  J  (
x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
54releqd 4760 . 2  |-  ( J  e.  Top  ->  ( Rel  ( ~~> t `  J
)  <->  Rel  { <. f ,  x >.  |  (
f  e.  ( U. J  ^pm  CC )  /\  x  e.  U. J  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } ) )
61, 5mpbiri 168 1  |-  ( J  e.  Top  ->  Rel  (
~~> t `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   U.cuni 3850   {copab 4105   ran crn 4677    |` cres 4678   Rel wrel 4681   -->wf 5268   ` cfv 5272  (class class class)co 5946    ^pm cpm 6738   CCcc 7925   ZZ>=cuz 9650   Topctop 14502  TopOnctopon 14515   ~~> tclm 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pm 6740  df-top 14503  df-topon 14516  df-lm 14695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator