ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k Unicode version

Theorem cnprcl2k 12375
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )

Proof of Theorem cnprcl2k
Dummy variables  x  f  g  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 12181 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
213ad2ant1 1002 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
3 simp2 982 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
4 uniexg 4361 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  U. J  e. 
_V )
543ad2ant1 1002 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e. 
_V )
6 mptexg 5645 . . . . . . 7  |-  ( U. J  e.  _V  ->  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )
75, 6syl 14 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )
8 unieq 3745 . . . . . . . 8  |-  ( j  =  J  ->  U. j  =  U. J )
98oveq2d 5790 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. k  ^m  U. j
)  =  ( U. k  ^m  U. J ) )
10 rexeq 2627 . . . . . . . . . . 11  |-  ( j  =  J  ->  ( E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
)  <->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) )
1110imbi2d 229 . . . . . . . . . 10  |-  ( j  =  J  ->  (
( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) )  <->  ( (
f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) ) )
1211ralbidv 2437 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. y  e.  k 
( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) )  <->  A. y  e.  k  ( (
f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) ) )
139, 12rabeqbidv 2681 . . . . . . . 8  |-  ( j  =  J  ->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  =  { f  e.  ( U. k  ^m  U. J )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
148, 13mpteq12dv 4010 . . . . . . 7  |-  ( j  =  J  ->  (
x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  =  ( x  e. 
U. J  |->  { f  e.  ( U. k  ^m  U. J )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
15 unieq 3745 . . . . . . . . . 10  |-  ( k  =  K  ->  U. k  =  U. K )
1615oveq1d 5789 . . . . . . . . 9  |-  ( k  =  K  ->  ( U. k  ^m  U. J
)  =  ( U. K  ^m  U. J ) )
17 raleq 2626 . . . . . . . . 9  |-  ( k  =  K  ->  ( A. y  e.  k 
( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) ) )
1816, 17rabeqbidv 2681 . . . . . . . 8  |-  ( k  =  K  ->  { f  e.  ( U. k  ^m  U. J )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) }  =  {
f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( ( f `
 x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )
1918mpteq2dv 4019 . . . . . . 7  |-  ( k  =  K  ->  (
x  e.  U. J  |->  { f  e.  ( U. k  ^m  U. J )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
20 df-cnp 12358 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
2114, 19, 20ovmpog 5905 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )  ->  ( J  CnP  K )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
222, 3, 7, 21syl3anc 1216 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( J  CnP  K )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
2322dmeqd 4741 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  =  dom  ( x  e. 
U. J  |->  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
24 eqid 2139 . . . . 5  |-  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( ( f `
 x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
2524dmmptss 5035 . . . 4  |-  dom  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  C_  U. J
2623, 25eqsstrdi 3149 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  C_  U. J )
27 toponuni 12182 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
28273ad2ant1 1002 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  X  =  U. J )
2926, 28sseqtrrd 3136 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  C_  X )
30 mptrel 4667 . . . 4  |-  Rel  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
3122releqd 4623 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( Rel  ( J  CnP  K )  <->  Rel  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) ) )
3230, 31mpbiri 167 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  Rel  ( J  CnP  K ) )
33 simp3 983 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
34 relelfvdm 5453 . . 3  |-  ( ( Rel  ( J  CnP  K )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  dom  ( J  CnP  K
) )
3532, 33, 34syl2anc 408 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  dom  ( J  CnP  K
) )
3629, 35sseldd 3098 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   U.cuni 3736    |-> cmpt 3989   dom cdm 4539   "cima 4542   Rel wrel 4544   ` cfv 5123  (class class class)co 5774    ^m cmap 6542   Topctop 12164  TopOnctopon 12177    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-topon 12178  df-cnp 12358
This theorem is referenced by:  cnpf2  12376  cnptopco  12391  cncnp  12399  cnptoprest2  12409  metcnpi  12684  metcnpi2  12685  metcnpi3  12686  limccnpcntop  12813  limccnp2lem  12814  limccnp2cntop  12815
  Copyright terms: Public domain W3C validator