ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k Unicode version

Theorem cnprcl2k 12156
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )

Proof of Theorem cnprcl2k
Dummy variables  x  f  g  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 11963 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
213ad2ant1 970 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
3 simp2 950 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
4 uniexg 4299 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  U. J  e. 
_V )
543ad2ant1 970 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e. 
_V )
6 mptexg 5577 . . . . . . 7  |-  ( U. J  e.  _V  ->  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )
75, 6syl 14 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )
8 unieq 3692 . . . . . . . 8  |-  ( j  =  J  ->  U. j  =  U. J )
98oveq2d 5722 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. k  ^m  U. j
)  =  ( U. k  ^m  U. J ) )
10 rexeq 2585 . . . . . . . . . . 11  |-  ( j  =  J  ->  ( E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
)  <->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) )
1110imbi2d 229 . . . . . . . . . 10  |-  ( j  =  J  ->  (
( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) )  <->  ( (
f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) ) )
1211ralbidv 2396 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. y  e.  k 
( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) )  <->  A. y  e.  k  ( (
f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) ) )
139, 12rabeqbidv 2636 . . . . . . . 8  |-  ( j  =  J  ->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  =  { f  e.  ( U. k  ^m  U. J )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
148, 13mpteq12dv 3950 . . . . . . 7  |-  ( j  =  J  ->  (
x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  =  ( x  e. 
U. J  |->  { f  e.  ( U. k  ^m  U. J )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
15 unieq 3692 . . . . . . . . . 10  |-  ( k  =  K  ->  U. k  =  U. K )
1615oveq1d 5721 . . . . . . . . 9  |-  ( k  =  K  ->  ( U. k  ^m  U. J
)  =  ( U. K  ^m  U. J ) )
17 raleq 2584 . . . . . . . . 9  |-  ( k  =  K  ->  ( A. y  e.  k 
( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) ) )
1816, 17rabeqbidv 2636 . . . . . . . 8  |-  ( k  =  K  ->  { f  e.  ( U. k  ^m  U. J )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) }  =  {
f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( ( f `
 x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )
1918mpteq2dv 3959 . . . . . . 7  |-  ( k  =  K  ->  (
x  e.  U. J  |->  { f  e.  ( U. k  ^m  U. J )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
20 df-cnp 12140 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
2114, 19, 20ovmpog 5837 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )  ->  ( J  CnP  K )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
222, 3, 7, 21syl3anc 1184 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( J  CnP  K )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
2322dmeqd 4679 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  =  dom  ( x  e. 
U. J  |->  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
24 eqid 2100 . . . . 5  |-  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( ( f `
 x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
2524dmmptss 4971 . . . 4  |-  dom  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  C_  U. J
2623, 25syl6eqss 3099 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  C_  U. J )
27 toponuni 11964 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
28273ad2ant1 970 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  X  =  U. J )
2926, 28sseqtr4d 3086 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  C_  X )
30 mptrel 4605 . . . 4  |-  Rel  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
3122releqd 4561 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( Rel  ( J  CnP  K )  <->  Rel  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) ) )
3230, 31mpbiri 167 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  Rel  ( J  CnP  K ) )
33 simp3 951 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
34 relelfvdm 5385 . . 3  |-  ( ( Rel  ( J  CnP  K )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  dom  ( J  CnP  K
) )
3532, 33, 34syl2anc 406 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  dom  ( J  CnP  K
) )
3629, 35sseldd 3048 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 930    = wceq 1299    e. wcel 1448   A.wral 2375   E.wrex 2376   {crab 2379   _Vcvv 2641    C_ wss 3021   U.cuni 3683    |-> cmpt 3929   dom cdm 4477   "cima 4480   Rel wrel 4482   ` cfv 5059  (class class class)co 5706    ^m cmap 6472   Topctop 11946  TopOnctopon 11959    CnP ccnp 12137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-topon 11960  df-cnp 12140
This theorem is referenced by:  cnpf2  12157  cnptopco  12172  cncnp  12180  cnptoprest2  12190  metcnpi  12439  metcnpi2  12440  metcnpi3  12441  limccnpcntop  12520
  Copyright terms: Public domain W3C validator