Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnprcl2k | Unicode version |
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
Ref | Expression |
---|---|
cnprcl2k | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12806 | . . . . . . 7 TopOn | |
2 | 1 | 3ad2ant1 1013 | . . . . . 6 TopOn |
3 | simp2 993 | . . . . . 6 TopOn | |
4 | uniexg 4424 | . . . . . . . 8 TopOn | |
5 | 4 | 3ad2ant1 1013 | . . . . . . 7 TopOn |
6 | mptexg 5721 | . . . . . . 7 | |
7 | 5, 6 | syl 14 | . . . . . 6 TopOn |
8 | unieq 3805 | . . . . . . . 8 | |
9 | 8 | oveq2d 5869 | . . . . . . . . 9 |
10 | rexeq 2666 | . . . . . . . . . . 11 | |
11 | 10 | imbi2d 229 | . . . . . . . . . 10 |
12 | 11 | ralbidv 2470 | . . . . . . . . 9 |
13 | 9, 12 | rabeqbidv 2725 | . . . . . . . 8 |
14 | 8, 13 | mpteq12dv 4071 | . . . . . . 7 |
15 | unieq 3805 | . . . . . . . . . 10 | |
16 | 15 | oveq1d 5868 | . . . . . . . . 9 |
17 | raleq 2665 | . . . . . . . . 9 | |
18 | 16, 17 | rabeqbidv 2725 | . . . . . . . 8 |
19 | 18 | mpteq2dv 4080 | . . . . . . 7 |
20 | df-cnp 12983 | . . . . . . 7 | |
21 | 14, 19, 20 | ovmpog 5987 | . . . . . 6 |
22 | 2, 3, 7, 21 | syl3anc 1233 | . . . . 5 TopOn |
23 | 22 | dmeqd 4813 | . . . 4 TopOn |
24 | eqid 2170 | . . . . 5 | |
25 | 24 | dmmptss 5107 | . . . 4 |
26 | 23, 25 | eqsstrdi 3199 | . . 3 TopOn |
27 | toponuni 12807 | . . . 4 TopOn | |
28 | 27 | 3ad2ant1 1013 | . . 3 TopOn |
29 | 26, 28 | sseqtrrd 3186 | . 2 TopOn |
30 | mptrel 4739 | . . . 4 | |
31 | 22 | releqd 4695 | . . . 4 TopOn |
32 | 30, 31 | mpbiri 167 | . . 3 TopOn |
33 | simp3 994 | . . 3 TopOn | |
34 | relelfvdm 5528 | . . 3 | |
35 | 32, 33, 34 | syl2anc 409 | . 2 TopOn |
36 | 29, 35 | sseldd 3148 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cuni 3796 cmpt 4050 cdm 4611 cima 4614 wrel 4616 cfv 5198 (class class class)co 5853 cmap 6626 ctop 12789 TopOnctopon 12802 ccnp 12980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-topon 12803 df-cnp 12983 |
This theorem is referenced by: cnpf2 13001 cnptopco 13016 cncnp 13024 cnptoprest2 13034 metcnpi 13309 metcnpi2 13310 metcnpi3 13311 limccnpcntop 13438 limccnp2lem 13439 limccnp2cntop 13440 |
Copyright terms: Public domain | W3C validator |