ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k Unicode version

Theorem cnprcl2k 13000
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )

Proof of Theorem cnprcl2k
Dummy variables  x  f  g  j  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 12806 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
213ad2ant1 1013 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
3 simp2 993 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
4 uniexg 4424 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  U. J  e. 
_V )
543ad2ant1 1013 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e. 
_V )
6 mptexg 5721 . . . . . . 7  |-  ( U. J  e.  _V  ->  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )
75, 6syl 14 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )
8 unieq 3805 . . . . . . . 8  |-  ( j  =  J  ->  U. j  =  U. J )
98oveq2d 5869 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. k  ^m  U. j
)  =  ( U. k  ^m  U. J ) )
10 rexeq 2666 . . . . . . . . . . 11  |-  ( j  =  J  ->  ( E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
)  <->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) )
1110imbi2d 229 . . . . . . . . . 10  |-  ( j  =  J  ->  (
( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) )  <->  ( (
f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) ) )
1211ralbidv 2470 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. y  e.  k 
( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) )  <->  A. y  e.  k  ( (
f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) ) )
139, 12rabeqbidv 2725 . . . . . . . 8  |-  ( j  =  J  ->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  =  { f  e.  ( U. k  ^m  U. J )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
148, 13mpteq12dv 4071 . . . . . . 7  |-  ( j  =  J  ->  (
x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  =  ( x  e. 
U. J  |->  { f  e.  ( U. k  ^m  U. J )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
15 unieq 3805 . . . . . . . . . 10  |-  ( k  =  K  ->  U. k  =  U. K )
1615oveq1d 5868 . . . . . . . . 9  |-  ( k  =  K  ->  ( U. k  ^m  U. J
)  =  ( U. K  ^m  U. J ) )
17 raleq 2665 . . . . . . . . 9  |-  ( k  =  K  ->  ( A. y  e.  k 
( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) ) )
1816, 17rabeqbidv 2725 . . . . . . . 8  |-  ( k  =  K  ->  { f  e.  ( U. k  ^m  U. J )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) }  =  {
f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( ( f `
 x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )
1918mpteq2dv 4080 . . . . . . 7  |-  ( k  =  K  ->  (
x  e.  U. J  |->  { f  e.  ( U. k  ^m  U. J )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
20 df-cnp 12983 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
2114, 19, 20ovmpog 5987 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  e. 
_V )  ->  ( J  CnP  K )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
222, 3, 7, 21syl3anc 1233 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( J  CnP  K )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
2322dmeqd 4813 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  =  dom  ( x  e. 
U. J  |->  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( ( f `  x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) )
24 eqid 2170 . . . . 5  |-  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( ( f `
 x )  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
2524dmmptss 5107 . . . 4  |-  dom  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )  C_  U. J
2623, 25eqsstrdi 3199 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  C_  U. J )
27 toponuni 12807 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
28273ad2ant1 1013 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  X  =  U. J )
2926, 28sseqtrrd 3186 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  dom  ( J  CnP  K )  C_  X )
30 mptrel 4739 . . . 4  |-  Rel  (
x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } )
3122releqd 4695 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( Rel  ( J  CnP  K )  <->  Rel  ( x  e.  U. J  |->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  (
( f `  x
)  e.  y  ->  E. g  e.  J  ( x  e.  g  /\  ( f " g
)  C_  y )
) } ) ) )
3230, 31mpbiri 167 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  Rel  ( J  CnP  K ) )
33 simp3 994 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
34 relelfvdm 5528 . . 3  |-  ( ( Rel  ( J  CnP  K )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  dom  ( J  CnP  K
) )
3532, 33, 34syl2anc 409 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  dom  ( J  CnP  K
) )
3629, 35sseldd 3148 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   _Vcvv 2730    C_ wss 3121   U.cuni 3796    |-> cmpt 4050   dom cdm 4611   "cima 4614   Rel wrel 4616   ` cfv 5198  (class class class)co 5853    ^m cmap 6626   Topctop 12789  TopOnctopon 12802    CnP ccnp 12980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-topon 12803  df-cnp 12983
This theorem is referenced by:  cnpf2  13001  cnptopco  13016  cncnp  13024  cnptoprest2  13034  metcnpi  13309  metcnpi2  13310  metcnpi3  13311  limccnpcntop  13438  limccnp2lem  13439  limccnp2cntop  13440
  Copyright terms: Public domain W3C validator