| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnprcl2k | Unicode version | ||
| Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.) |
| Ref | Expression |
|---|---|
| cnprcl2k |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14334 |
. . . . . . 7
| |
| 2 | 1 | 3ad2ant1 1020 |
. . . . . 6
|
| 3 | simp2 1000 |
. . . . . 6
| |
| 4 | uniexg 4475 |
. . . . . . . 8
| |
| 5 | 4 | 3ad2ant1 1020 |
. . . . . . 7
|
| 6 | mptexg 5790 |
. . . . . . 7
| |
| 7 | 5, 6 | syl 14 |
. . . . . 6
|
| 8 | unieq 3849 |
. . . . . . . 8
| |
| 9 | 8 | oveq2d 5941 |
. . . . . . . . 9
|
| 10 | rexeq 2694 |
. . . . . . . . . . 11
| |
| 11 | 10 | imbi2d 230 |
. . . . . . . . . 10
|
| 12 | 11 | ralbidv 2497 |
. . . . . . . . 9
|
| 13 | 9, 12 | rabeqbidv 2758 |
. . . . . . . 8
|
| 14 | 8, 13 | mpteq12dv 4116 |
. . . . . . 7
|
| 15 | unieq 3849 |
. . . . . . . . . 10
| |
| 16 | 15 | oveq1d 5940 |
. . . . . . . . 9
|
| 17 | raleq 2693 |
. . . . . . . . 9
| |
| 18 | 16, 17 | rabeqbidv 2758 |
. . . . . . . 8
|
| 19 | 18 | mpteq2dv 4125 |
. . . . . . 7
|
| 20 | df-cnp 14509 |
. . . . . . 7
| |
| 21 | 14, 19, 20 | ovmpog 6061 |
. . . . . 6
|
| 22 | 2, 3, 7, 21 | syl3anc 1249 |
. . . . 5
|
| 23 | 22 | dmeqd 4869 |
. . . 4
|
| 24 | eqid 2196 |
. . . . 5
| |
| 25 | 24 | dmmptss 5167 |
. . . 4
|
| 26 | 23, 25 | eqsstrdi 3236 |
. . 3
|
| 27 | toponuni 14335 |
. . . 4
| |
| 28 | 27 | 3ad2ant1 1020 |
. . 3
|
| 29 | 26, 28 | sseqtrrd 3223 |
. 2
|
| 30 | mptrel 4795 |
. . . 4
| |
| 31 | 22 | releqd 4748 |
. . . 4
|
| 32 | 30, 31 | mpbiri 168 |
. . 3
|
| 33 | simp3 1001 |
. . 3
| |
| 34 | relelfvdm 5593 |
. . 3
| |
| 35 | 32, 33, 34 | syl2anc 411 |
. 2
|
| 36 | 29, 35 | sseldd 3185 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-topon 14331 df-cnp 14509 |
| This theorem is referenced by: cnpf2 14527 cnptopco 14542 cncnp 14550 cnptoprest2 14560 metcnpi 14835 metcnpi2 14836 metcnpi3 14837 limccnpcntop 14995 limccnp2lem 14996 limccnp2cntop 14997 |
| Copyright terms: Public domain | W3C validator |