ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  residm GIF version

Theorem residm 4964
Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
residm ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)

Proof of Theorem residm
StepHypRef Expression
1 ssid 3195 . 2 𝐵𝐵
2 resabs2 4963 . 2 (𝐵𝐵 → ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3149  cres 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2758  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-opab 4087  df-xp 4657  df-rel 4658  df-res 4663
This theorem is referenced by:  resima  4965  fvsnun2  5744
  Copyright terms: Public domain W3C validator