ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima Unicode version

Theorem resima 4901
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima  |-  ( ( A  |`  B ) " B )  =  ( A " B )

Proof of Theorem resima
StepHypRef Expression
1 residm 4900 . . 3  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
21rneqi 4816 . 2  |-  ran  (
( A  |`  B )  |`  B )  =  ran  ( A  |`  B )
3 df-ima 4601 . 2  |-  ( ( A  |`  B ) " B )  =  ran  ( ( A  |`  B )  |`  B )
4 df-ima 4601 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
52, 3, 43eqtr4i 2188 1  |-  ( ( A  |`  B ) " B )  =  ( A " B )
Colors of variables: wff set class
Syntax hints:    = wceq 1335   ran crn 4589    |` cres 4590   "cima 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4028  df-xp 4594  df-rel 4595  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601
This theorem is referenced by:  isarep2  5259  f1imacnv  5433  foimacnv  5434  djudm  7051  suplocexprlemell  7635  elq  9537  qnnen  12230
  Copyright terms: Public domain W3C validator