ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima Unicode version

Theorem resima 4991
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima  |-  ( ( A  |`  B ) " B )  =  ( A " B )

Proof of Theorem resima
StepHypRef Expression
1 residm 4990 . . 3  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
21rneqi 4905 . 2  |-  ran  (
( A  |`  B )  |`  B )  =  ran  ( A  |`  B )
3 df-ima 4687 . 2  |-  ( ( A  |`  B ) " B )  =  ran  ( ( A  |`  B )  |`  B )
4 df-ima 4687 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
52, 3, 43eqtr4i 2235 1  |-  ( ( A  |`  B ) " B )  =  ( A " B )
Colors of variables: wff set class
Syntax hints:    = wceq 1372   ran crn 4675    |` cres 4676   "cima 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687
This theorem is referenced by:  isarep2  5360  f1imacnv  5538  foimacnv  5539  djudm  7206  suplocexprlemell  7825  elq  9742  qnnen  12773
  Copyright terms: Public domain W3C validator