ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima Unicode version

Theorem resima 5038
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima  |-  ( ( A  |`  B ) " B )  =  ( A " B )

Proof of Theorem resima
StepHypRef Expression
1 residm 5037 . . 3  |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
21rneqi 4952 . 2  |-  ran  (
( A  |`  B )  |`  B )  =  ran  ( A  |`  B )
3 df-ima 4732 . 2  |-  ( ( A  |`  B ) " B )  =  ran  ( ( A  |`  B )  |`  B )
4 df-ima 4732 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
52, 3, 43eqtr4i 2260 1  |-  ( ( A  |`  B ) " B )  =  ( A " B )
Colors of variables: wff set class
Syntax hints:    = wceq 1395   ran crn 4720    |` cres 4721   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  isarep2  5408  f1imacnv  5589  foimacnv  5590  djudm  7272  suplocexprlemell  7900  elq  9817  qnnen  13002
  Copyright terms: Public domain W3C validator