ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun2 Unicode version

Theorem fvsnun2 5805
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5804. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun2  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 4974 . . . 4  |-  ( G  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C 
\  { A }
) ) )  |`  ( C  \  { A } ) )
3 resundir 4992 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  u.  (
( F  |`  ( C  \  { A }
) )  |`  ( C  \  { A }
) ) )
4 disjdif 3541 . . . . . . 7  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
5 fvsnun.1 . . . . . . . . 9  |-  A  e. 
_V
6 fvsnun.2 . . . . . . . . 9  |-  B  e. 
_V
75, 6fnsn 5347 . . . . . . . 8  |-  { <. A ,  B >. }  Fn  { A }
8 fnresdisj 5405 . . . . . . . 8  |-  ( {
<. A ,  B >. }  Fn  { A }  ->  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/)  <->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) ) )
97, 8ax-mp 5 . . . . . . 7  |-  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/) 
<->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) )
104, 9mpbi 145 . . . . . 6  |-  ( {
<. A ,  B >. }  |`  ( C  \  { A } ) )  =  (/)
11 residm 5010 . . . . . 6  |-  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A } ) )
1210, 11uneq12i 3333 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  (
(/)  u.  ( F  |`  ( C  \  { A } ) ) )
13 uncom 3325 . . . . 5  |-  ( (/)  u.  ( F  |`  ( C  \  { A }
) ) )  =  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )
14 un0 3502 . . . . 5  |-  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )  =  ( F  |`  ( C  \  { A }
) )
1512, 13, 143eqtri 2232 . . . 4  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  ( F  |`  ( C  \  { A } ) )
162, 3, 153eqtri 2232 . . 3  |-  ( G  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A }
) )
1716fveq1i 5600 . 2  |-  ( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( ( F  |`  ( C  \  { A } ) ) `  D )
18 fvres 5623 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( G `  D ) )
19 fvres 5623 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( F  |`  ( C  \  { A } ) ) `  D )  =  ( F `  D ) )
2017, 18, 193eqtr3a 2264 1  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    \ cdif 3171    u. cun 3172    i^i cin 3173   (/)c0 3468   {csn 3643   <.cop 3646    |` cres 4695    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by:  facnn  10909
  Copyright terms: Public domain W3C validator