| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun2 | Unicode version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5762. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 |
|
| fvsnun.2 |
|
| fvsnun.3 |
|
| Ref | Expression |
|---|---|
| fvsnun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 |
. . . . 5
| |
| 2 | 1 | reseq1i 4943 |
. . . 4
|
| 3 | resundir 4961 |
. . . 4
| |
| 4 | disjdif 3524 |
. . . . . . 7
| |
| 5 | fvsnun.1 |
. . . . . . . . 9
| |
| 6 | fvsnun.2 |
. . . . . . . . 9
| |
| 7 | 5, 6 | fnsn 5313 |
. . . . . . . 8
|
| 8 | fnresdisj 5371 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . 7
|
| 10 | 4, 9 | mpbi 145 |
. . . . . 6
|
| 11 | residm 4979 |
. . . . . 6
| |
| 12 | 10, 11 | uneq12i 3316 |
. . . . 5
|
| 13 | uncom 3308 |
. . . . 5
| |
| 14 | un0 3485 |
. . . . 5
| |
| 15 | 12, 13, 14 | 3eqtri 2221 |
. . . 4
|
| 16 | 2, 3, 15 | 3eqtri 2221 |
. . 3
|
| 17 | 16 | fveq1i 5562 |
. 2
|
| 18 | fvres 5585 |
. 2
| |
| 19 | fvres 5585 |
. 2
| |
| 20 | 17, 18, 19 | 3eqtr3a 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: facnn 10836 |
| Copyright terms: Public domain | W3C validator |