| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun2 | Unicode version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5836. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 |
|
| fvsnun.2 |
|
| fvsnun.3 |
|
| Ref | Expression |
|---|---|
| fvsnun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 |
. . . . 5
| |
| 2 | 1 | reseq1i 5001 |
. . . 4
|
| 3 | resundir 5019 |
. . . 4
| |
| 4 | disjdif 3564 |
. . . . . . 7
| |
| 5 | fvsnun.1 |
. . . . . . . . 9
| |
| 6 | fvsnun.2 |
. . . . . . . . 9
| |
| 7 | 5, 6 | fnsn 5375 |
. . . . . . . 8
|
| 8 | fnresdisj 5433 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . 7
|
| 10 | 4, 9 | mpbi 145 |
. . . . . 6
|
| 11 | residm 5037 |
. . . . . 6
| |
| 12 | 10, 11 | uneq12i 3356 |
. . . . 5
|
| 13 | uncom 3348 |
. . . . 5
| |
| 14 | un0 3525 |
. . . . 5
| |
| 15 | 12, 13, 14 | 3eqtri 2254 |
. . . 4
|
| 16 | 2, 3, 15 | 3eqtri 2254 |
. . 3
|
| 17 | 16 | fveq1i 5628 |
. 2
|
| 18 | fvres 5651 |
. 2
| |
| 19 | fvres 5651 |
. 2
| |
| 20 | 17, 18, 19 | 3eqtr3a 2286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: facnn 10949 |
| Copyright terms: Public domain | W3C validator |