| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun2 | Unicode version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5781. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 |
|
| fvsnun.2 |
|
| fvsnun.3 |
|
| Ref | Expression |
|---|---|
| fvsnun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 |
. . . . 5
| |
| 2 | 1 | reseq1i 4955 |
. . . 4
|
| 3 | resundir 4973 |
. . . 4
| |
| 4 | disjdif 3533 |
. . . . . . 7
| |
| 5 | fvsnun.1 |
. . . . . . . . 9
| |
| 6 | fvsnun.2 |
. . . . . . . . 9
| |
| 7 | 5, 6 | fnsn 5328 |
. . . . . . . 8
|
| 8 | fnresdisj 5386 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . 7
|
| 10 | 4, 9 | mpbi 145 |
. . . . . 6
|
| 11 | residm 4991 |
. . . . . 6
| |
| 12 | 10, 11 | uneq12i 3325 |
. . . . 5
|
| 13 | uncom 3317 |
. . . . 5
| |
| 14 | un0 3494 |
. . . . 5
| |
| 15 | 12, 13, 14 | 3eqtri 2230 |
. . . 4
|
| 16 | 2, 3, 15 | 3eqtri 2230 |
. . 3
|
| 17 | 16 | fveq1i 5577 |
. 2
|
| 18 | fvres 5600 |
. 2
| |
| 19 | fvres 5600 |
. 2
| |
| 20 | 17, 18, 19 | 3eqtr3a 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: facnn 10872 |
| Copyright terms: Public domain | W3C validator |