ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun2 Unicode version

Theorem fvsnun2 5692
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5691. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun2  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 4885 . . . 4  |-  ( G  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C 
\  { A }
) ) )  |`  ( C  \  { A } ) )
3 resundir 4903 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  u.  (
( F  |`  ( C  \  { A }
) )  |`  ( C  \  { A }
) ) )
4 disjdif 3486 . . . . . . 7  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
5 fvsnun.1 . . . . . . . . 9  |-  A  e. 
_V
6 fvsnun.2 . . . . . . . . 9  |-  B  e. 
_V
75, 6fnsn 5250 . . . . . . . 8  |-  { <. A ,  B >. }  Fn  { A }
8 fnresdisj 5306 . . . . . . . 8  |-  ( {
<. A ,  B >. }  Fn  { A }  ->  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/)  <->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) ) )
97, 8ax-mp 5 . . . . . . 7  |-  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/) 
<->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) )
104, 9mpbi 144 . . . . . 6  |-  ( {
<. A ,  B >. }  |`  ( C  \  { A } ) )  =  (/)
11 residm 4921 . . . . . 6  |-  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A } ) )
1210, 11uneq12i 3279 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  (
(/)  u.  ( F  |`  ( C  \  { A } ) ) )
13 uncom 3271 . . . . 5  |-  ( (/)  u.  ( F  |`  ( C  \  { A }
) ) )  =  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )
14 un0 3447 . . . . 5  |-  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )  =  ( F  |`  ( C  \  { A }
) )
1512, 13, 143eqtri 2195 . . . 4  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  ( F  |`  ( C  \  { A } ) )
162, 3, 153eqtri 2195 . . 3  |-  ( G  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A }
) )
1716fveq1i 5495 . 2  |-  ( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( ( F  |`  ( C  \  { A } ) ) `  D )
18 fvres 5518 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( G `  D ) )
19 fvres 5518 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( F  |`  ( C  \  { A } ) ) `  D )  =  ( F `  D ) )
2017, 18, 193eqtr3a 2227 1  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730    \ cdif 3118    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3581   <.cop 3584    |` cres 4611    Fn wfn 5191   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-res 4621  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204
This theorem is referenced by:  facnn  10654
  Copyright terms: Public domain W3C validator