Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reu6i | GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
reu6i | ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2164 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐵)) | |
2 | 1 | bibi2d 231 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝐵))) |
3 | 2 | ralbidv 2454 | . . 3 ⊢ (𝑦 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵))) |
4 | 3 | rspcev 2813 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
5 | reu6 2897 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 ∀wral 2432 ∃wrex 2433 ∃!wreu 2434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-reu 2439 df-v 2711 |
This theorem is referenced by: eqreu 2900 riota5f 5794 negeu 8045 creur 8809 creui 8810 |
Copyright terms: Public domain | W3C validator |