| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu6i | GIF version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reu6i | ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐵)) | |
| 2 | 1 | bibi2d 232 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝐵))) |
| 3 | 2 | ralbidv 2506 | . . 3 ⊢ (𝑦 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵))) |
| 4 | 3 | rspcev 2877 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
| 5 | reu6 2962 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 ∃!wreu 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 |
| This theorem is referenced by: eqreu 2965 riota5f 5924 negeu 8263 creur 9032 creui 9033 |
| Copyright terms: Public domain | W3C validator |