| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reu6 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) | 
| Ref | Expression | 
|---|---|
| reu6 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-reu 2482 | 
. 2
 | |
| 2 | 19.28v 1915 | 
. . . . 5
 | |
| 3 | eleq1 2259 | 
. . . . . . . . . . . 12
 | |
| 4 | sbequ12 1785 | 
. . . . . . . . . . . 12
 | |
| 5 | 3, 4 | anbi12d 473 | 
. . . . . . . . . . 11
 | 
| 6 | equequ1 1726 | 
. . . . . . . . . . 11
 | |
| 7 | 5, 6 | bibi12d 235 | 
. . . . . . . . . 10
 | 
| 8 | equid 1715 | 
. . . . . . . . . . . 12
 | |
| 9 | 8 | tbt 247 | 
. . . . . . . . . . 11
 | 
| 10 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 11 | 9, 10 | sylbir 135 | 
. . . . . . . . . 10
 | 
| 12 | 7, 11 | biimtrdi 163 | 
. . . . . . . . 9
 | 
| 13 | 12 | spimv 1825 | 
. . . . . . . 8
 | 
| 14 | biimp 118 | 
. . . . . . . . . . . 12
 | |
| 15 | 14 | expdimp 259 | 
. . . . . . . . . . 11
 | 
| 16 | biimpr 130 | 
. . . . . . . . . . . . 13
 | |
| 17 | simpr 110 | 
. . . . . . . . . . . . 13
 | |
| 18 | 16, 17 | syl6 33 | 
. . . . . . . . . . . 12
 | 
| 19 | 18 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 20 | 15, 19 | impbid 129 | 
. . . . . . . . . 10
 | 
| 21 | 20 | ex 115 | 
. . . . . . . . 9
 | 
| 22 | 21 | sps 1551 | 
. . . . . . . 8
 | 
| 23 | 13, 22 | jca 306 | 
. . . . . . 7
 | 
| 24 | 23 | a5i 1557 | 
. . . . . 6
 | 
| 25 | biimp 118 | 
. . . . . . . . . . 11
 | |
| 26 | 25 | imim2i 12 | 
. . . . . . . . . 10
 | 
| 27 | 26 | impd 254 | 
. . . . . . . . 9
 | 
| 28 | 27 | adantl 277 | 
. . . . . . . 8
 | 
| 29 | eleq1a 2268 | 
. . . . . . . . . . . 12
 | |
| 30 | 29 | adantr 276 | 
. . . . . . . . . . 11
 | 
| 31 | 30 | imp 124 | 
. . . . . . . . . 10
 | 
| 32 | biimpr 130 | 
. . . . . . . . . . . . . 14
 | |
| 33 | 32 | imim2i 12 | 
. . . . . . . . . . . . 13
 | 
| 34 | 33 | com23 78 | 
. . . . . . . . . . . 12
 | 
| 35 | 34 | imp 124 | 
. . . . . . . . . . 11
 | 
| 36 | 35 | adantll 476 | 
. . . . . . . . . 10
 | 
| 37 | 31, 36 | jcai 311 | 
. . . . . . . . 9
 | 
| 38 | 37 | ex 115 | 
. . . . . . . 8
 | 
| 39 | 28, 38 | impbid 129 | 
. . . . . . 7
 | 
| 40 | 39 | alimi 1469 | 
. . . . . 6
 | 
| 41 | 24, 40 | impbii 126 | 
. . . . 5
 | 
| 42 | df-ral 2480 | 
. . . . . 6
 | |
| 43 | 42 | anbi2i 457 | 
. . . . 5
 | 
| 44 | 2, 41, 43 | 3bitr4i 212 | 
. . . 4
 | 
| 45 | 44 | exbii 1619 | 
. . 3
 | 
| 46 | df-eu 2048 | 
. . 3
 | |
| 47 | df-rex 2481 | 
. . 3
 | |
| 48 | 45, 46, 47 | 3bitr4i 212 | 
. 2
 | 
| 49 | 1, 48 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 df-reu 2482 | 
| This theorem is referenced by: reu3 2954 reu6i 2955 reu8 2960 xpf1o 6905 | 
| Copyright terms: Public domain | W3C validator |