ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeu Unicode version

Theorem negeu 8097
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negeu  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem negeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnegex 8084 . . 3  |-  ( A  e.  CC  ->  E. y  e.  CC  ( A  +  y )  =  0 )
21adantr 274 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. y  e.  CC  ( A  +  y
)  =  0 )
3 simpl 108 . . . 4  |-  ( ( y  e.  CC  /\  ( A  +  y
)  =  0 )  ->  y  e.  CC )
4 simpr 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
5 addcl 7886 . . . 4  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( y  +  B
)  e.  CC )
63, 4, 5syl2anr 288 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  -> 
( y  +  B
)  e.  CC )
7 simplrr 531 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  ( A  +  y )  =  0 )
87oveq1d 5865 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  y )  +  B )  =  ( 0  +  B ) )
9 simplll 528 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  A  e.  CC )
10 simplrl 530 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  y  e.  CC )
11 simpllr 529 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  B  e.  CC )
129, 10, 11addassd 7929 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  y )  +  B )  =  ( A  +  ( y  +  B
) ) )
1311addid2d 8056 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
0  +  B )  =  B )
148, 12, 133eqtr3rd 2212 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  B  =  ( A  +  ( y  +  B
) ) )
1514eqeq2d 2182 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  B  <->  ( A  +  x )  =  ( A  +  ( y  +  B ) ) ) )
16 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  x  e.  CC )
1710, 11addcld 7926 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
y  +  B )  e.  CC )
189, 16, 17addcand 8090 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  ( A  +  ( y  +  B ) )  <->  x  =  ( y  +  B
) ) )
1915, 18bitrd 187 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
y  e.  CC  /\  ( A  +  y
)  =  0 ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  B  <->  x  =  ( y  +  B
) ) )
2019ralrimiva 2543 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  ->  A. x  e.  CC  ( ( A  +  x )  =  B  <-> 
x  =  ( y  +  B ) ) )
21 reu6i 2921 . . 3  |-  ( ( ( y  +  B
)  e.  CC  /\  A. x  e.  CC  (
( A  +  x
)  =  B  <->  x  =  ( y  +  B
) ) )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
226, 20, 21syl2anc 409 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( y  e.  CC  /\  ( A  +  y )  =  0 ) )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
232, 22rexlimddv 2592 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E! x  e.  CC  ( A  +  x
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   E!wreu 2450  (class class class)co 5850   CCcc 7759   0cc0 7761    + caddc 7764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7853  ax-1cn 7854  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5853
This theorem is referenced by:  subval  8098  subcl  8105  subadd  8109
  Copyright terms: Public domain W3C validator