| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeu | Unicode version | ||
| Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex 8285 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | addcl 8085 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 5982 |
. . . . . . 7
|
| 9 | simplll 533 |
. . . . . . . 8
| |
| 10 | simplrl 535 |
. . . . . . . 8
| |
| 11 | simpllr 534 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | addassd 8130 |
. . . . . . 7
|
| 13 | 11 | addlidd 8257 |
. . . . . . 7
|
| 14 | 8, 12, 13 | 3eqtr3rd 2249 |
. . . . . 6
|
| 15 | 14 | eqeq2d 2219 |
. . . . 5
|
| 16 | simpr 110 |
. . . . . 6
| |
| 17 | 10, 11 | addcld 8127 |
. . . . . 6
|
| 18 | 9, 16, 17 | addcand 8291 |
. . . . 5
|
| 19 | 15, 18 | bitrd 188 |
. . . 4
|
| 20 | 19 | ralrimiva 2581 |
. . 3
|
| 21 | reu6i 2971 |
. . 3
| |
| 22 | 6, 20, 21 | syl2anc 411 |
. 2
|
| 23 | 2, 22 | rexlimddv 2630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: subval 8299 subcl 8306 subadd 8310 |
| Copyright terms: Public domain | W3C validator |