| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeu | Unicode version | ||
| Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex 8324 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | addcl 8124 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 6016 |
. . . . . . 7
|
| 9 | simplll 533 |
. . . . . . . 8
| |
| 10 | simplrl 535 |
. . . . . . . 8
| |
| 11 | simpllr 534 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | addassd 8169 |
. . . . . . 7
|
| 13 | 11 | addlidd 8296 |
. . . . . . 7
|
| 14 | 8, 12, 13 | 3eqtr3rd 2271 |
. . . . . 6
|
| 15 | 14 | eqeq2d 2241 |
. . . . 5
|
| 16 | simpr 110 |
. . . . . 6
| |
| 17 | 10, 11 | addcld 8166 |
. . . . . 6
|
| 18 | 9, 16, 17 | addcand 8330 |
. . . . 5
|
| 19 | 15, 18 | bitrd 188 |
. . . 4
|
| 20 | 19 | ralrimiva 2603 |
. . 3
|
| 21 | reu6i 2994 |
. . 3
| |
| 22 | 6, 20, 21 | syl2anc 411 |
. 2
|
| 23 | 2, 22 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: subval 8338 subcl 8345 subadd 8349 |
| Copyright terms: Public domain | W3C validator |