| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeu | Unicode version | ||
| Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex 8250 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | addcl 8050 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 5959 |
. . . . . . 7
|
| 9 | simplll 533 |
. . . . . . . 8
| |
| 10 | simplrl 535 |
. . . . . . . 8
| |
| 11 | simpllr 534 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | addassd 8095 |
. . . . . . 7
|
| 13 | 11 | addlidd 8222 |
. . . . . . 7
|
| 14 | 8, 12, 13 | 3eqtr3rd 2247 |
. . . . . 6
|
| 15 | 14 | eqeq2d 2217 |
. . . . 5
|
| 16 | simpr 110 |
. . . . . 6
| |
| 17 | 10, 11 | addcld 8092 |
. . . . . 6
|
| 18 | 9, 16, 17 | addcand 8256 |
. . . . 5
|
| 19 | 15, 18 | bitrd 188 |
. . . 4
|
| 20 | 19 | ralrimiva 2579 |
. . 3
|
| 21 | reu6i 2964 |
. . 3
| |
| 22 | 6, 20, 21 | syl2anc 411 |
. 2
|
| 23 | 2, 22 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: subval 8264 subcl 8271 subadd 8275 |
| Copyright terms: Public domain | W3C validator |