Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeu | Unicode version |
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnegex 8084 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | simpl 108 | . . . 4 | |
4 | simpr 109 | . . . 4 | |
5 | addcl 7886 | . . . 4 | |
6 | 3, 4, 5 | syl2anr 288 | . . 3 |
7 | simplrr 531 | . . . . . . . 8 | |
8 | 7 | oveq1d 5865 | . . . . . . 7 |
9 | simplll 528 | . . . . . . . 8 | |
10 | simplrl 530 | . . . . . . . 8 | |
11 | simpllr 529 | . . . . . . . 8 | |
12 | 9, 10, 11 | addassd 7929 | . . . . . . 7 |
13 | 11 | addid2d 8056 | . . . . . . 7 |
14 | 8, 12, 13 | 3eqtr3rd 2212 | . . . . . 6 |
15 | 14 | eqeq2d 2182 | . . . . 5 |
16 | simpr 109 | . . . . . 6 | |
17 | 10, 11 | addcld 7926 | . . . . . 6 |
18 | 9, 16, 17 | addcand 8090 | . . . . 5 |
19 | 15, 18 | bitrd 187 | . . . 4 |
20 | 19 | ralrimiva 2543 | . . 3 |
21 | reu6i 2921 | . . 3 | |
22 | 6, 20, 21 | syl2anc 409 | . 2 |
23 | 2, 22 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 wreu 2450 (class class class)co 5850 cc 7759 cc0 7761 caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7853 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 |
This theorem is referenced by: subval 8098 subcl 8105 subadd 8109 |
Copyright terms: Public domain | W3C validator |