Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeu | Unicode version |
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnegex 8076 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | simpl 108 | . . . 4 | |
4 | simpr 109 | . . . 4 | |
5 | addcl 7878 | . . . 4 | |
6 | 3, 4, 5 | syl2anr 288 | . . 3 |
7 | simplrr 526 | . . . . . . . 8 | |
8 | 7 | oveq1d 5857 | . . . . . . 7 |
9 | simplll 523 | . . . . . . . 8 | |
10 | simplrl 525 | . . . . . . . 8 | |
11 | simpllr 524 | . . . . . . . 8 | |
12 | 9, 10, 11 | addassd 7921 | . . . . . . 7 |
13 | 11 | addid2d 8048 | . . . . . . 7 |
14 | 8, 12, 13 | 3eqtr3rd 2207 | . . . . . 6 |
15 | 14 | eqeq2d 2177 | . . . . 5 |
16 | simpr 109 | . . . . . 6 | |
17 | 10, 11 | addcld 7918 | . . . . . 6 |
18 | 9, 16, 17 | addcand 8082 | . . . . 5 |
19 | 15, 18 | bitrd 187 | . . . 4 |
20 | 19 | ralrimiva 2539 | . . 3 |
21 | reu6i 2917 | . . 3 | |
22 | 6, 20, 21 | syl2anc 409 | . 2 |
23 | 2, 22 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 wreu 2446 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: subval 8090 subcl 8097 subadd 8101 |
Copyright terms: Public domain | W3C validator |