| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeu | Unicode version | ||
| Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex 8221 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | addcl 8021 |
. . . 4
| |
| 6 | 3, 4, 5 | syl2anr 290 |
. . 3
|
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 5940 |
. . . . . . 7
|
| 9 | simplll 533 |
. . . . . . . 8
| |
| 10 | simplrl 535 |
. . . . . . . 8
| |
| 11 | simpllr 534 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | addassd 8066 |
. . . . . . 7
|
| 13 | 11 | addlidd 8193 |
. . . . . . 7
|
| 14 | 8, 12, 13 | 3eqtr3rd 2238 |
. . . . . 6
|
| 15 | 14 | eqeq2d 2208 |
. . . . 5
|
| 16 | simpr 110 |
. . . . . 6
| |
| 17 | 10, 11 | addcld 8063 |
. . . . . 6
|
| 18 | 9, 16, 17 | addcand 8227 |
. . . . 5
|
| 19 | 15, 18 | bitrd 188 |
. . . 4
|
| 20 | 19 | ralrimiva 2570 |
. . 3
|
| 21 | reu6i 2955 |
. . 3
| |
| 22 | 6, 20, 21 | syl2anc 411 |
. 2
|
| 23 | 2, 22 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: subval 8235 subcl 8242 subadd 8246 |
| Copyright terms: Public domain | W3C validator |