ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 Unicode version

Theorem rexlimdva2 2586
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
Assertion
Ref Expression
rexlimdva2  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ch, x    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
21exp31 362 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
32rexlimdv 2582 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  ctssdclemn0  7075  ctssdc  7078  suplocexprlemru  7660  suplocexprlemloc  7662  suplocsrlemb  7747  ennnfonelemhom  12348  innei  12803  ivthinclemlr  13255  ivthinclemur  13257  limccnpcntop  13284  limccoap  13287
  Copyright terms: Public domain W3C validator