ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 Unicode version

Theorem rexlimdva2 2625
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
Assertion
Ref Expression
rexlimdva2  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ch, x    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
21exp31 364 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
32rexlimdv 2621 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   E.wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-ral 2488  df-rex 2489
This theorem is referenced by:  ctssdclemn0  7211  ctssdc  7214  suplocexprlemru  7831  suplocexprlemloc  7833  suplocsrlemb  7918  aptap  8722  4sqlemffi  12690  4sqleminfi  12691  4sqexercise2  12693  4sqlemsdc  12694  ennnfonelemhom  12757  gsumfzval  13194  reldvdsrsrg  13825  innei  14606  ivthinclemlr  15080  ivthinclemur  15082  limccnpcntop  15118  limccoap  15121  2lgslem1c  15538  2lgslem3a1  15545  2lgslem3b1  15546  2lgslem3c1  15547  2lgslem3d1  15548
  Copyright terms: Public domain W3C validator