| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdva2 | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 |
|
| Ref | Expression |
|---|---|
| rexlimdva2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | rexlimdv 2647 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: ctssdclemn0 7273 ctssdc 7276 suplocexprlemru 7902 suplocexprlemloc 7904 suplocsrlemb 7989 aptap 8793 4sqlemffi 12914 4sqleminfi 12915 4sqexercise2 12917 4sqlemsdc 12918 ennnfonelemhom 12981 gsumfzval 13419 reldvdsrsrg 14050 innei 14831 ivthinclemlr 15305 ivthinclemur 15307 limccnpcntop 15343 limccoap 15346 2lgslem1c 15763 2lgslem3a1 15770 2lgslem3b1 15771 2lgslem3c1 15772 2lgslem3d1 15773 umgrnloop 15910 |
| Copyright terms: Public domain | W3C validator |