| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdva2 | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 |
|
| Ref | Expression |
|---|---|
| rexlimdva2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 |
. . 3
| |
| 2 | 1 | exp31 364 |
. 2
|
| 3 | 2 | rexlimdv 2622 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: ctssdclemn0 7212 ctssdc 7215 suplocexprlemru 7832 suplocexprlemloc 7834 suplocsrlemb 7919 aptap 8723 4sqlemffi 12719 4sqleminfi 12720 4sqexercise2 12722 4sqlemsdc 12723 ennnfonelemhom 12786 gsumfzval 13223 reldvdsrsrg 13854 innei 14635 ivthinclemlr 15109 ivthinclemur 15111 limccnpcntop 15147 limccoap 15150 2lgslem1c 15567 2lgslem3a1 15574 2lgslem3b1 15575 2lgslem3c1 15576 2lgslem3d1 15577 |
| Copyright terms: Public domain | W3C validator |