ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctssdclemn0 Unicode version

Theorem ctssdclemn0 7075
Description: Lemma for ctssdc 7078. The  -.  (/)  e.  S case. (Contributed by Jim Kingdon, 16-Aug-2023.)
Hypotheses
Ref Expression
ctssdclemn0.ss  |-  ( ph  ->  S  C_  om )
ctssdclemn0.dc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctssdclemn0.f  |-  ( ph  ->  F : S -onto-> A
)
ctssdclemn0.n0  |-  ( ph  ->  -.  (/)  e.  S )
Assertion
Ref Expression
ctssdclemn0  |-  ( ph  ->  E. g  g : om -onto-> ( A 1o ) )
Distinct variable groups:    A, g    g, F    S, g    S, n
Allowed substitution hints:    ph( g, n)    A( n)    F( n)

Proof of Theorem ctssdclemn0
Dummy variables  m  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ctssdclemn0.f . . . . . . . . 9  |-  ( ph  ->  F : S -onto-> A
)
21ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  m  e.  S )  ->  F : S -onto-> A )
3 fof 5410 . . . . . . . 8  |-  ( F : S -onto-> A  ->  F : S --> A )
42, 3syl 14 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  m  e.  S )  ->  F : S --> A )
5 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  m  e.  S )  ->  m  e.  S )
64, 5ffvelrnd 5621 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  m  e.  S )  ->  ( F `  m )  e.  A )
7 djulcl 7016 . . . . . 6  |-  ( ( F `  m )  e.  A  ->  (inl `  ( F `  m
) )  e.  ( A 1o ) )
86, 7syl 14 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  m  e.  S )  ->  (inl `  ( F `  m
) )  e.  ( A 1o ) )
9 0lt1o 6408 . . . . . . 7  |-  (/)  e.  1o
10 djurcl 7017 . . . . . . 7  |-  ( (/)  e.  1o  ->  (inr `  (/) )  e.  ( A 1o )
)
119, 10ax-mp 5 . . . . . 6  |-  (inr `  (/) )  e.  ( A 1o )
1211a1i 9 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  m  e.  S )  ->  (inr `  (/) )  e.  ( A 1o )
)
13 eleq1 2229 . . . . . . 7  |-  ( n  =  m  ->  (
n  e.  S  <->  m  e.  S ) )
1413dcbid 828 . . . . . 6  |-  ( n  =  m  ->  (DECID  n  e.  S  <-> DECID  m  e.  S )
)
15 ctssdclemn0.dc . . . . . . 7  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
1615adantr 274 . . . . . 6  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om DECID  n  e.  S )
17 simpr 109 . . . . . 6  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
1814, 16, 17rspcdva 2835 . . . . 5  |-  ( (
ph  /\  m  e.  om )  -> DECID  m  e.  S
)
198, 12, 18ifcldadc 3549 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  if (
m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) )  e.  ( A 1o ) )
2019fmpttd 5640 . . 3  |-  ( ph  ->  ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) : om --> ( A 1o ) )
211ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  F : S -onto-> A )
22 simplr 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  z  e.  A )
23 foelrn 5721 . . . . . . . . 9  |-  ( ( F : S -onto-> A  /\  z  e.  A
)  ->  E. y  e.  S  z  =  ( F `  y ) )
2421, 22, 23syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  E. y  e.  S  z  =  ( F `  y ) )
25 simplr 520 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  y  e.  S )
2625iftrued 3527 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  if (
y  e.  S , 
(inl `  ( F `  y ) ) ,  (inr `  (/) ) )  =  (inl `  ( F `  y )
) )
27 eqid 2165 . . . . . . . . . . . 12  |-  ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) )  =  ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) )
28 eleq1 2229 . . . . . . . . . . . . 13  |-  ( m  =  y  ->  (
m  e.  S  <->  y  e.  S ) )
29 2fveq3 5491 . . . . . . . . . . . . 13  |-  ( m  =  y  ->  (inl `  ( F `  m
) )  =  (inl
`  ( F `  y ) ) )
3028, 29ifbieq1d 3542 . . . . . . . . . . . 12  |-  ( m  =  y  ->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) )  =  if ( y  e.  S ,  (inl
`  ( F `  y ) ) ,  (inr `  (/) ) ) )
31 ctssdclemn0.ss . . . . . . . . . . . . . 14  |-  ( ph  ->  S  C_  om )
3231ad5antr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  S  C_  om )
3332, 25sseldd 3143 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  y  e.  om )
341, 3syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : S --> A )
3534ad5antr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  F : S
--> A )
3635, 25ffvelrnd 5621 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  ( F `  y )  e.  A
)
37 djulcl 7016 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  e.  A  ->  (inl `  ( F `  y
) )  e.  ( A 1o ) )
3836, 37syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  (inl `  ( F `  y )
)  e.  ( A 1o ) )
3926, 38eqeltrd 2243 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  if (
y  e.  S , 
(inl `  ( F `  y ) ) ,  (inr `  (/) ) )  e.  ( A 1o ) )
4027, 30, 33, 39fvmptd3 5579 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y )  =  if ( y  e.  S ,  (inl
`  ( F `  y ) ) ,  (inr `  (/) ) ) )
41 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  x  =  (inl `  z ) )
42 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  z  =  ( F `  y ) )
4342fveq2d 5490 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  (inl `  z
)  =  (inl `  ( F `  y ) ) )
4441, 43eqtrd 2198 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  x  =  (inl `  ( F `  y ) ) )
4526, 40, 443eqtr4rd 2209 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A
)  /\  x  =  (inl `  z ) )  /\  y  e.  S
)  /\  z  =  ( F `  y ) )  ->  x  =  ( ( m  e. 
om  |->  if ( m  e.  S ,  (inl
`  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
4645ex 114 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  /\  y  e.  S )  ->  (
z  =  ( F `
 y )  ->  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
4746reximdva 2568 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  ( E. y  e.  S  z  =  ( F `  y )  ->  E. y  e.  S  x  =  ( ( m  e. 
om  |->  if ( m  e.  S ,  (inl
`  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
4824, 47mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  E. y  e.  S  x  =  ( ( m  e. 
om  |->  if ( m  e.  S ,  (inl
`  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
49 ssrexv 3207 . . . . . . . . 9  |-  ( S 
C_  om  ->  ( E. y  e.  S  x  =  ( ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
5031, 49syl 14 . . . . . . . 8  |-  ( ph  ->  ( E. y  e.  S  x  =  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
5150ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  ( E. y  e.  S  x  =  ( ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
5248, 51mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  A )  /\  x  =  (inl `  z )
)  ->  E. y  e.  om  x  =  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
5352rexlimdva2 2586 . . . . 5  |-  ( (
ph  /\  x  e.  ( A 1o ) )  ->  ( E. z  e.  A  x  =  (inl `  z )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
54 peano1 4571 . . . . . . . 8  |-  (/)  e.  om
5554a1i 9 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  (/)  e.  om )
56 ctssdclemn0.n0 . . . . . . . . . 10  |-  ( ph  ->  -.  (/)  e.  S )
5756ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  -.  (/)  e.  S
)
5857iffalsed 3530 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  if ( (/) 
e.  S ,  (inl
`  ( F `  (/) ) ) ,  (inr
`  (/) ) )  =  (inr `  (/) ) )
59 eleq1 2229 . . . . . . . . . 10  |-  ( m  =  (/)  ->  ( m  e.  S  <->  (/)  e.  S
) )
60 2fveq3 5491 . . . . . . . . . 10  |-  ( m  =  (/)  ->  (inl `  ( F `  m ) )  =  (inl `  ( F `  (/) ) ) )
6159, 60ifbieq1d 3542 . . . . . . . . 9  |-  ( m  =  (/)  ->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) )  =  if ( (/)  e.  S ,  (inl `  ( F `  (/) ) ) ,  (inr `  (/) ) ) )
6258, 11eqeltrdi 2257 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  if ( (/) 
e.  S ,  (inl
`  ( F `  (/) ) ) ,  (inr
`  (/) ) )  e.  ( A 1o )
)
6327, 61, 55, 62fvmptd3 5579 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  (/) )  =  if ( (/)  e.  S ,  (inl `  ( F `  (/) ) ) ,  (inr `  (/) ) ) )
64 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  x  =  (inr `  z ) )
65 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  z  e.  1o )
66 el1o 6405 . . . . . . . . . . 11  |-  ( z  e.  1o  <->  z  =  (/) )
6765, 66sylib 121 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  z  =  (/) )
6867fveq2d 5490 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  (inr `  z
)  =  (inr `  (/) ) )
6964, 68eqtrd 2198 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  x  =  (inr `  (/) ) )
7058, 63, 693eqtr4rd 2209 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  x  =  ( ( m  e. 
om  |->  if ( m  e.  S ,  (inl
`  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  (/) ) )
71 fveq2 5486 . . . . . . . 8  |-  ( y  =  (/)  ->  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y )  =  ( ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  (/) ) )
7271rspceeqv 2848 . . . . . . 7  |-  ( (
(/)  e.  om  /\  x  =  ( ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  (/) ) )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
7355, 70, 72syl2anc 409 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A 1o ) )  /\  z  e.  1o )  /\  x  =  (inr `  z )
)  ->  E. y  e.  om  x  =  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
7473rexlimdva2 2586 . . . . 5  |-  ( (
ph  /\  x  e.  ( A 1o ) )  ->  ( E. z  e.  1o  x  =  (inr
`  z )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
75 djur 7034 . . . . . . 7  |-  ( x  e.  ( A 1o )  <-> 
( E. z  e.  A  x  =  (inl
`  z )  \/ 
E. z  e.  1o  x  =  (inr `  z
) ) )
7675biimpi 119 . . . . . 6  |-  ( x  e.  ( A 1o )  ->  ( E. z  e.  A  x  =  (inl `  z )  \/ 
E. z  e.  1o  x  =  (inr `  z
) ) )
7776adantl 275 . . . . 5  |-  ( (
ph  /\  x  e.  ( A 1o ) )  ->  ( E. z  e.  A  x  =  (inl `  z )  \/ 
E. z  e.  1o  x  =  (inr `  z
) ) )
7853, 74, 77mpjaod 708 . . . 4  |-  ( (
ph  /\  x  e.  ( A 1o ) )  ->  E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
7978ralrimiva 2539 . . 3  |-  ( ph  ->  A. x  e.  ( A 1o ) E. y  e.  om  x  =  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) )
80 dffo3 5632 . . 3  |-  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) : om -onto-> ( A 1o )  <->  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) : om --> ( A 1o )  /\  A. x  e.  ( A 1o ) E. y  e.  om  x  =  ( (
m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) `  y ) ) )
8120, 79, 80sylanbrc 414 . 2  |-  ( ph  ->  ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) : om -onto-> ( A 1o ) )
82 omex 4570 . . . 4  |-  om  e.  _V
8382mptex 5711 . . 3  |-  ( m  e.  om  |->  if ( m  e.  S , 
(inl `  ( F `  m ) ) ,  (inr `  (/) ) ) )  e.  _V
84 foeq1 5406 . . 3  |-  ( g  =  ( m  e. 
om  |->  if ( m  e.  S ,  (inl
`  ( F `  m ) ) ,  (inr `  (/) ) ) )  ->  ( g : om -onto-> ( A 1o )  <-> 
( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) : om -onto-> ( A 1o ) ) )
8583, 84spcev 2821 . 2  |-  ( ( m  e.  om  |->  if ( m  e.  S ,  (inl `  ( F `  m ) ) ,  (inr `  (/) ) ) ) : om -onto-> ( A 1o )  ->  E. g 
g : om -onto-> ( A 1o ) )
8681, 85syl 14 1  |-  ( ph  ->  E. g  g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   (/)c0 3409   ifcif 3520    |-> cmpt 4043   omcom 4567   -->wf 5184   -onto->wfo 5186   ` cfv 5188   1oc1o 6377   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  ctssdc  7078
  Copyright terms: Public domain W3C validator