ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccoap Unicode version

Theorem limccoap 12855
Description: Composition of two limits. This theorem is only usable in the case where  x #  X implies R(x) #  C so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
Hypotheses
Ref Expression
limccoap.r  |-  ( (
ph  /\  x  e.  { w  e.  A  |  w #  X } )  ->  R  e.  { w  e.  B  |  w #  C } )
limccoap.s  |-  ( (
ph  /\  y  e.  { w  e.  B  |  w #  C } )  ->  S  e.  CC )
limccoap.c  |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim
CC  X ) )
limccoap.d  |-  ( ph  ->  D  e.  ( ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
CC  C ) )
limcco.1  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
limccoap  |-  ( ph  ->  D  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  T ) lim
CC  X ) )
Distinct variable groups:    w, A, x   
w, B, x, y   
w, C, x, y   
x, D, y    w, R, y    x, S    y, T    w, X, x    ph, x, y
Allowed substitution hints:    ph( w)    A( y)    D( w)    R( x)    S( y, w)    T( x, w)    X( y)

Proof of Theorem limccoap
Dummy variables  d  e  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccoap.d . . . 4  |-  ( ph  ->  D  e.  ( ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
CC  C ) )
2 apsscn 8433 . . . . . 6  |-  { w  e.  B  |  w #  C }  C_  CC
32a1i 9 . . . . 5  |-  ( ph  ->  { w  e.  B  |  w #  C }  C_  CC )
4 limcrcl 12835 . . . . . . 7  |-  ( D  e.  ( ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim CC  C )  ->  (
( y  e.  {
w  e.  B  |  w #  C }  |->  S ) : dom  ( y  e.  { w  e.  B  |  w #  C }  |->  S ) --> CC 
/\  dom  ( y  e.  { w  e.  B  |  w #  C }  |->  S )  C_  CC  /\  C  e.  CC ) )
51, 4syl 14 . . . . . 6  |-  ( ph  ->  ( ( y  e. 
{ w  e.  B  |  w #  C }  |->  S ) : dom  ( y  e.  {
w  e.  B  |  w #  C }  |->  S ) --> CC  /\  dom  (
y  e.  { w  e.  B  |  w #  C }  |->  S ) 
C_  CC  /\  C  e.  CC ) )
65simp3d 996 . . . . 5  |-  ( ph  ->  C  e.  CC )
7 limccoap.s . . . . 5  |-  ( (
ph  /\  y  e.  { w  e.  B  |  w #  C } )  ->  S  e.  CC )
83, 6, 7limcmpted 12840 . . . 4  |-  ( ph  ->  ( D  e.  ( ( y  e.  {
w  e.  B  |  w #  C }  |->  S ) lim
CC  C )  <->  ( D  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  {
w  e.  B  |  w #  C }  ( ( y #  C  /\  ( abs `  ( y  -  C ) )  < 
d )  ->  ( abs `  ( S  -  D ) )  < 
e ) ) ) )
91, 8mpbid 146 . . 3  |-  ( ph  ->  ( D  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
) )
109simpld 111 . 2  |-  ( ph  ->  D  e.  CC )
119simprd 113 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)
12 breq2 3941 . . . . . . . . . 10  |-  ( v  =  d  ->  (
( abs `  ( R  -  C )
)  <  v  <->  ( abs `  ( R  -  C
) )  <  d
) )
1312imbi2d 229 . . . . . . . . 9  |-  ( v  =  d  ->  (
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  v )  <->  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  <  u )  -> 
( abs `  ( R  -  C )
)  <  d )
) )
1413rexralbidv 2464 . . . . . . . 8  |-  ( v  =  d  ->  ( E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  v )  <->  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  d )
) )
15 limccoap.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim
CC  X ) )
16 apsscn 8433 . . . . . . . . . . . . 13  |-  { w  e.  A  |  w #  X }  C_  CC
1716a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  { w  e.  A  |  w #  X }  C_  CC )
18 limcrcl 12835 . . . . . . . . . . . . . 14  |-  ( C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim CC  X )  ->  (
( x  e.  {
w  e.  A  |  w #  X }  |->  R ) : dom  ( x  e.  { w  e.  A  |  w #  X }  |->  R ) --> CC 
/\  dom  ( x  e.  { w  e.  A  |  w #  X }  |->  R )  C_  CC  /\  X  e.  CC ) )
1915, 18syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e. 
{ w  e.  A  |  w #  X }  |->  R ) : dom  ( x  e.  { w  e.  A  |  w #  X }  |->  R ) --> CC  /\  dom  (
x  e.  { w  e.  A  |  w #  X }  |->  R ) 
C_  CC  /\  X  e.  CC ) )
2019simp3d 996 . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  CC )
21 limccoap.r . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  { w  e.  A  |  w #  X } )  ->  R  e.  { w  e.  B  |  w #  C } )
222, 21sseldi 3100 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  { w  e.  A  |  w #  X } )  ->  R  e.  CC )
2317, 20, 22limcmpted 12840 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  ( ( x  e.  {
w  e.  A  |  w #  X }  |->  R ) lim
CC  X )  <->  ( C  e.  CC  /\  A. v  e.  RR+  E. u  e.  RR+  A. x  e.  {
w  e.  A  |  w #  X }  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( R  -  C ) )  < 
v ) ) ) )
2415, 23mpbid 146 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  CC  /\ 
A. v  e.  RR+  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  v )
) )
2524simprd 113 . . . . . . . . 9  |-  ( ph  ->  A. v  e.  RR+  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  v )
)
2625ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  A. v  e.  RR+  E. u  e.  RR+  A. x  e.  {
w  e.  A  |  w #  X }  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( R  -  C ) )  < 
v ) )
27 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2814, 26, 27rspcdva 2798 . . . . . . 7  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  E. u  e.  RR+  A. x  e. 
{ w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  d )
)
2928adantr 274 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C }  ( (
y #  C  /\  ( abs `  ( y  -  C ) )  < 
d )  ->  ( abs `  ( S  -  D ) )  < 
e ) )  ->  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  d )
)
30 simp-5l 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  ph )
3130, 21sylancom 417 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  R  e.  { w  e.  B  |  w #  C } )
32 breq1 3940 . . . . . . . . . . . . 13  |-  ( w  =  R  ->  (
w #  C  <->  R #  C
) )
3332elrab 2844 . . . . . . . . . . . 12  |-  ( R  e.  { w  e.  B  |  w #  C } 
<->  ( R  e.  B  /\  R #  C )
)
3431, 33sylib 121 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  ( R  e.  B  /\  R #  C
) )
3534simprd 113 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  R #  C
)
36 breq1 3940 . . . . . . . . . . . . 13  |-  ( y  =  R  ->  (
y #  C  <->  R #  C
) )
37 fvoveq1 5805 . . . . . . . . . . . . . 14  |-  ( y  =  R  ->  ( abs `  ( y  -  C ) )  =  ( abs `  ( R  -  C )
) )
3837breq1d 3947 . . . . . . . . . . . . 13  |-  ( y  =  R  ->  (
( abs `  (
y  -  C ) )  <  d  <->  ( abs `  ( R  -  C
) )  <  d
) )
3936, 38anbi12d 465 . . . . . . . . . . . 12  |-  ( y  =  R  ->  (
( y #  C  /\  ( abs `  ( y  -  C ) )  <  d )  <->  ( R #  C  /\  ( abs `  ( R  -  C )
)  <  d )
) )
40 limcco.1 . . . . . . . . . . . . . 14  |-  ( y  =  R  ->  S  =  T )
4140fvoveq1d 5804 . . . . . . . . . . . . 13  |-  ( y  =  R  ->  ( abs `  ( S  -  D ) )  =  ( abs `  ( T  -  D )
) )
4241breq1d 3947 . . . . . . . . . . . 12  |-  ( y  =  R  ->  (
( abs `  ( S  -  D )
)  <  e  <->  ( abs `  ( T  -  D
) )  <  e
) )
4339, 42imbi12d 233 . . . . . . . . . . 11  |-  ( y  =  R  ->  (
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )  <->  ( ( R #  C  /\  ( abs `  ( R  -  C ) )  <  d )  -> 
( abs `  ( T  -  D )
)  <  e )
) )
44 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)
4543, 44, 31rspcdva 2798 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  ( ( R #  C  /\  ( abs `  ( R  -  C ) )  < 
d )  ->  ( abs `  ( T  -  D ) )  < 
e ) )
4635, 45mpand 426 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  ( ( abs `  ( R  -  C ) )  < 
d  ->  ( abs `  ( T  -  D
) )  <  e
) )
4746imim2d 54 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )
)  /\  u  e.  RR+ )  /\  x  e. 
{ w  e.  A  |  w #  X }
)  ->  ( (
( x #  X  /\  ( abs `  ( x  -  X ) )  <  u )  -> 
( abs `  ( R  -  C )
)  <  d )  ->  ( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( T  -  D )
)  <  e )
) )
4847ralimdva 2502 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  {
w  e.  B  |  w #  C }  ( ( y #  C  /\  ( abs `  ( y  -  C ) )  < 
d )  ->  ( abs `  ( S  -  D ) )  < 
e ) )  /\  u  e.  RR+ )  -> 
( A. x  e. 
{ w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( R  -  C )
)  <  d )  ->  A. x  e.  {
w  e.  A  |  w #  X }  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( T  -  D ) )  < 
e ) ) )
4948reximdva 2537 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C }  ( (
y #  C  /\  ( abs `  ( y  -  C ) )  < 
d )  ->  ( abs `  ( S  -  D ) )  < 
e ) )  -> 
( E. u  e.  RR+  A. x  e.  {
w  e.  A  |  w #  X }  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( R  -  C ) )  < 
d )  ->  E. u  e.  RR+  A. x  e. 
{ w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( T  -  D )
)  <  e )
) )
5029, 49mpd 13 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  A. y  e.  { w  e.  B  |  w #  C }  ( (
y #  C  /\  ( abs `  ( y  -  C ) )  < 
d )  ->  ( abs `  ( S  -  D ) )  < 
e ) )  ->  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( T  -  D )
)  <  e )
)
5150rexlimdva2 2555 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. y  e.  { w  e.  B  |  w #  C } 
( ( y #  C  /\  ( abs `  (
y  -  C ) )  <  d )  ->  ( abs `  ( S  -  D )
)  <  e )  ->  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X }  ( (
x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( T  -  D ) )  < 
e ) ) )
5251ralimdva 2502 . . 3  |-  ( ph  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. y  e.  { w  e.  B  |  w #  C }  ( (
y #  C  /\  ( abs `  ( y  -  C ) )  < 
d )  ->  ( abs `  ( S  -  D ) )  < 
e )  ->  A. e  e.  RR+  E. u  e.  RR+  A. x  e.  {
w  e.  A  |  w #  X }  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( T  -  D ) )  < 
e ) ) )
5311, 52mpd 13 . 2  |-  ( ph  ->  A. e  e.  RR+  E. u  e.  RR+  A. x  e.  { w  e.  A  |  w #  X } 
( ( x #  X  /\  ( abs `  (
x  -  X ) )  <  u )  ->  ( abs `  ( T  -  D )
)  <  e )
)
5440eleq1d 2209 . . . 4  |-  ( y  =  R  ->  ( S  e.  CC  <->  T  e.  CC ) )
557ralrimiva 2508 . . . . 5  |-  ( ph  ->  A. y  e.  {
w  e.  B  |  w #  C } S  e.  CC )
5655adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  { w  e.  A  |  w #  X } )  ->  A. y  e.  { w  e.  B  |  w #  C } S  e.  CC )
5754, 56, 21rspcdva 2798 . . 3  |-  ( (
ph  /\  x  e.  { w  e.  A  |  w #  X } )  ->  T  e.  CC )
5817, 20, 57limcmpted 12840 . 2  |-  ( ph  ->  ( D  e.  ( ( x  e.  {
w  e.  A  |  w #  X }  |->  T ) lim
CC  X )  <->  ( D  e.  CC  /\  A. e  e.  RR+  E. u  e.  RR+  A. x  e.  {
w  e.  A  |  w #  X }  ( ( x #  X  /\  ( abs `  ( x  -  X ) )  < 
u )  ->  ( abs `  ( T  -  D ) )  < 
e ) ) ) )
5910, 53, 58mpbir2and 929 1  |-  ( ph  ->  D  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  T ) lim
CC  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421    C_ wss 3076   class class class wbr 3937    |-> cmpt 3997   dom cdm 4547   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642    < clt 7824    - cmin 7957   # cap 8367   RR+crp 9470   abscabs 10801   lim CC climc 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-icn 7739  ax-addcl 7740  ax-mulcl 7742
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pm 6553  df-ap 8368  df-limced 12833
This theorem is referenced by:  dvcoapbr  12879
  Copyright terms: Public domain W3C validator