ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnpcntop Unicode version

Theorem limccnpcntop 14911
Description: If the limit of  F at  B is  C and  G is continuous at  C, then the limit of  G  o.  F at  B is  G ( C ). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
Hypotheses
Ref Expression
limccnp.f  |-  ( ph  ->  F : A --> D )
limccnp.d  |-  ( ph  ->  D  C_  CC )
limccnpcntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
limccnp.j  |-  J  =  ( Kt  D )
limccnp.c  |-  ( ph  ->  C  e.  ( F lim
CC  B ) )
limccnp.b  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 C ) )
Assertion
Ref Expression
limccnpcntop  |-  ( ph  ->  ( G `  C
)  e.  ( ( G  o.  F ) lim
CC  B ) )

Proof of Theorem limccnpcntop
Dummy variables  p  z  d  e  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . 5  |-  J  =  ( Kt  D )
2 limccnpcntop.k . . . . . . 7  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
32cntoptopon 14768 . . . . . 6  |-  K  e.  (TopOn `  CC )
4 limccnp.d . . . . . 6  |-  ( ph  ->  D  C_  CC )
5 resttopon 14407 . . . . . 6  |-  ( ( K  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  ( Kt  D )  e.  (TopOn `  D ) )
63, 4, 5sylancr 414 . . . . 5  |-  ( ph  ->  ( Kt  D )  e.  (TopOn `  D ) )
71, 6eqeltrid 2283 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  D ) )
83a1i 9 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
9 limccnp.b . . . 4  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 C ) )
10 cnpf2 14443 . . . 4  |-  ( ( J  e.  (TopOn `  D )  /\  K  e.  (TopOn `  CC )  /\  G  e.  (
( J  CnP  K
) `  C )
)  ->  G : D
--> CC )
117, 8, 9, 10syl3anc 1249 . . 3  |-  ( ph  ->  G : D --> CC )
122cntoptop 14769 . . . . 5  |-  K  e. 
Top
1312a1i 9 . . . 4  |-  ( ph  ->  K  e.  Top )
14 cnprcl2k 14442 . . . 4  |-  ( ( J  e.  (TopOn `  D )  /\  K  e.  Top  /\  G  e.  ( ( J  CnP  K ) `  C ) )  ->  C  e.  D )
157, 13, 9, 14syl3anc 1249 . . 3  |-  ( ph  ->  C  e.  D )
1611, 15ffvelcdmd 5698 . 2  |-  ( ph  ->  ( G `  C
)  e.  CC )
17 cnxmet 14767 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
18 eqid 2196 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( D  X.  D
) )  =  ( ( abs  o.  -  )  |`  ( D  X.  D ) )
19 eqid 2196 . . . . . . . . 9  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )
2018, 2, 19metrest 14742 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  D  C_  CC )  -> 
( Kt  D )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ) )
2117, 4, 20sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Kt  D )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ) )
221, 21eqtrid 2241 . . . . . 6  |-  ( ph  ->  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) ) )
232a1i 9 . . . . . 6  |-  ( ph  ->  K  =  ( MetOpen `  ( abs  o.  -  )
) )
24 xmetres2 14615 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  D  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( D  X.  D ) )  e.  ( *Met `  D ) )
2517, 4, 24sylancr 414 . . . . . 6  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( D  X.  D ) )  e.  ( *Met `  D ) )
2617a1i 9 . . . . . 6  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
2722, 23, 25, 26, 15metcnpd 14756 . . . . 5  |-  ( ph  ->  ( G  e.  ( ( J  CnP  K
) `  C )  <->  ( G : D --> CC  /\  A. e  e.  RR+  E. p  e.  RR+  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
) ) )
289, 27mpbid 147 . . . 4  |-  ( ph  ->  ( G : D --> CC  /\  A. e  e.  RR+  E. p  e.  RR+  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e ) ) )
2928simprd 114 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. p  e.  RR+  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)
30 simplll 533 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e ) )  ->  ph )
31 simplr 528 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e ) )  ->  p  e.  RR+ )
32 limccnp.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( F lim
CC  B ) )
33 limccnp.f . . . . . . . . . . . 12  |-  ( ph  ->  F : A --> D )
3433, 4fssd 5420 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> CC )
3533fdmd 5414 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =  A )
36 limcrcl 14894 . . . . . . . . . . . . . 14  |-  ( C  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
3732, 36syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
3837simp2d 1012 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  C_  CC )
3935, 38eqsstrrd 3220 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  CC )
4037simp3d 1013 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
4134, 39, 40ellimc3ap 14897 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. p  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
p ) ) ) )
4232, 41mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  CC  /\ 
A. p  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
p ) ) )
4342simprd 114 . . . . . . . 8  |-  ( ph  ->  A. p  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
p ) )
4443r19.21bi 2585 . . . . . . 7  |-  ( (
ph  /\  p  e.  RR+ )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  p
) )
4530, 31, 44syl2anc 411 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  p ) )
46 oveq2 5930 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  z )  ->  ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  =  ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ( F `  z
) ) )
4746breq1d 4043 . . . . . . . . . . . 12  |-  ( w  =  ( F `  z )  ->  (
( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  <->  ( C
( ( abs  o.  -  )  |`  ( D  X.  D ) ) ( F `  z
) )  <  p
) )
48 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( w  =  ( F `  z )  ->  ( G `  w )  =  ( G `  ( F `  z ) ) )
4948oveq2d 5938 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  z )  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  =  ( ( G `
 C ) ( abs  o.  -  )
( G `  ( F `  z )
) ) )
5049breq1d 4043 . . . . . . . . . . . 12  |-  ( w  =  ( F `  z )  ->  (
( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e  <->  ( ( G `  C )
( abs  o.  -  )
( G `  ( F `  z )
) )  <  e
) )
5147, 50imbi12d 234 . . . . . . . . . . 11  |-  ( w  =  ( F `  z )  ->  (
( ( C ( ( abs  o.  -  )  |`  ( D  X.  D ) ) w )  <  p  -> 
( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )  <->  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) ( F `
 z ) )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 ( F `  z ) ) )  <  e ) ) )
52 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)
5333ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  F : A --> D )
54 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  z  e.  A )
5553, 54ffvelcdmd 5698 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  z )  e.  D )
5651, 52, 55rspcdva 2873 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) ( F `
 z ) )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 ( F `  z ) ) )  <  e ) )
5715ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  C  e.  D )
5857, 55ovresd 6064 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ( F `  z
) )  =  ( C ( abs  o.  -  ) ( F `
 z ) ) )
5942simpld 112 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  CC )
6059ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  C  e.  CC )
614ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  D  C_  CC )
6261, 55sseldd 3184 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
63 eqid 2196 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
6463cnmetdval 14765 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  ( F `  z )  e.  CC )  -> 
( C ( abs 
o.  -  ) ( F `  z )
)  =  ( abs `  ( C  -  ( F `  z )
) ) )
6560, 62, 64syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( C ( abs  o.  -  ) ( F `
 z ) )  =  ( abs `  ( C  -  ( F `  z ) ) ) )
6660, 62abssubd 11358 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( C  -  ( F `  z ) ) )  =  ( abs `  ( ( F `  z )  -  C ) ) )
6758, 65, 663eqtrd 2233 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ( F `  z
) )  =  ( abs `  ( ( F `  z )  -  C ) ) )
6867breq1d 4043 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) ( F `
 z ) )  <  p  <->  ( abs `  ( ( F `  z )  -  C
) )  <  p
) )
6916ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( G `  C )  e.  CC )
7011ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  G : D --> CC )
7170, 55ffvelcdmd 5698 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( G `  ( F `  z ) )  e.  CC )
7263cnmetdval 14765 . . . . . . . . . . . . 13  |-  ( ( ( G `  C
)  e.  CC  /\  ( G `  ( F `
 z ) )  e.  CC )  -> 
( ( G `  C ) ( abs 
o.  -  ) ( G `  ( F `  z ) ) )  =  ( abs `  (
( G `  C
)  -  ( G `
 ( F `  z ) ) ) ) )
7369, 71, 72syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 ( F `  z ) ) )  =  ( abs `  (
( G `  C
)  -  ( G `
 ( F `  z ) ) ) ) )
74 fvco3 5632 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> D  /\  z  e.  A )  ->  ( ( G  o.  F ) `  z
)  =  ( G `
 ( F `  z ) ) )
7553, 54, 74syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( G  o.  F
) `  z )  =  ( G `  ( F `  z ) ) )
7675oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( G `  C
)  -  ( ( G  o.  F ) `
 z ) )  =  ( ( G `
 C )  -  ( G `  ( F `
 z ) ) ) )
7776fveq2d 5562 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( ( G `
 C )  -  ( ( G  o.  F ) `  z
) ) )  =  ( abs `  (
( G `  C
)  -  ( G `
 ( F `  z ) ) ) ) )
7875, 71eqeltrd 2273 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( G  o.  F
) `  z )  e.  CC )
7969, 78abssubd 11358 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  ( abs `  ( ( G `
 C )  -  ( ( G  o.  F ) `  z
) ) )  =  ( abs `  (
( ( G  o.  F ) `  z
)  -  ( G `
 C ) ) ) )
8073, 77, 793eqtr2d 2235 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 ( F `  z ) ) )  =  ( abs `  (
( ( G  o.  F ) `  z
)  -  ( G `
 C ) ) ) )
8180breq1d 4043 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( G `  C ) ( abs 
o.  -  ) ( G `  ( F `  z ) ) )  <  e  <->  ( abs `  ( ( ( G  o.  F ) `  z )  -  ( G `  C )
) )  <  e
) )
8256, 68, 813imtr3d 202 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( abs `  (
( F `  z
)  -  C ) )  <  p  -> 
( abs `  (
( ( G  o.  F ) `  z
)  -  ( G `
 C ) ) )  <  e ) )
8382imim2d 54 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  /\  z  e.  A )  ->  (
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  C ) )  <  p )  ->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( ( G  o.  F ) `  z )  -  ( G `  C )
) )  <  e
) ) )
8483ralimdva 2564 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D ) ) w )  <  p  -> 
( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )
)  /\  d  e.  RR+ )  ->  ( A. z  e.  A  (
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  p )  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( ( G  o.  F ) `  z
)  -  ( G `
 C ) ) )  <  e ) ) )
8584reximdva 2599 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e ) )  ->  ( E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  p
)  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( ( G  o.  F ) `  z )  -  ( G `  C )
) )  <  e
) ) )
8645, 85mpd 13 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  p  e.  RR+ )  /\  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e ) )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( G  o.  F ) `  z
)  -  ( G `
 C ) ) )  <  e ) )
8786rexlimdva2 2617 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. p  e.  RR+  A. w  e.  D  ( ( C ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) w )  <  p  ->  ( ( G `  C ) ( abs 
o.  -  ) ( G `  w )
)  <  e )  ->  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  d )  -> 
( abs `  (
( ( G  o.  F ) `  z
)  -  ( G `
 C ) ) )  <  e ) ) )
8887ralimdva 2564 . . 3  |-  ( ph  ->  ( A. e  e.  RR+  E. p  e.  RR+  A. w  e.  D  ( ( C ( ( abs  o.  -  )  |`  ( D  X.  D
) ) w )  <  p  ->  (
( G `  C
) ( abs  o.  -  ) ( G `
 w ) )  <  e )  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( ( G  o.  F ) `  z )  -  ( G `  C )
) )  <  e
) ) )
8929, 88mpd 13 . 2  |-  ( ph  ->  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( ( G  o.  F ) `
 z )  -  ( G `  C ) ) )  <  e
) )
90 fco 5423 . . . 4  |-  ( ( G : D --> CC  /\  F : A --> D )  ->  ( G  o.  F ) : A --> CC )
9111, 33, 90syl2anc 411 . . 3  |-  ( ph  ->  ( G  o.  F
) : A --> CC )
9291, 39, 40ellimc3ap 14897 . 2  |-  ( ph  ->  ( ( G `  C )  e.  ( ( G  o.  F
) lim CC  B )  <->  ( ( G `  C
)  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( ( G  o.  F ) `  z )  -  ( G `  C )
) )  <  e
) ) ) )
9316, 89, 92mpbir2and 946 1  |-  ( ph  ->  ( G `  C
)  e.  ( ( G  o.  F ) lim
CC  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4033    X. cxp 4661   dom cdm 4663    |` cres 4665    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877    < clt 8061    - cmin 8197   # cap 8608   RR+crp 9728   abscabs 11162   ↾t crest 12910   *Metcxmet 14092   MetOpencmopn 14097   Topctop 14233  TopOnctopon 14246    CnP ccnp 14422   lim CC climc 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cnp 14425  df-limced 14892
This theorem is referenced by:  dvcjbr  14944
  Copyright terms: Public domain W3C validator