ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvw Unicode version

Theorem rexlimdvw 2591
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rexlimdvw.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
rexlimdvw  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdvw
StepHypRef Expression
1 rexlimdvw.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21a1d 22 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
32rexlimdv 2586 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453  df-rex 2454
This theorem is referenced by:  nnpredcl  4607  qsss  6572  fodjuomnilemdc  7120  ltpopr  7557  ltsopr  7558  ltexprlemlol  7564  ltexprlemupu  7566  cauappcvgprlemrnd  7612  caucvgprlemrnd  7635  caucvgprprlemrnd  7663  suplocexprlemss  7677  suplocexprlemrl  7679  suplocsrlempr  7769  climuni  11256  cncnp2m  13025  bj-findis  14014
  Copyright terms: Public domain W3C validator