ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvw Unicode version

Theorem rexlimdvw 2587
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rexlimdvw.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
rexlimdvw  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdvw
StepHypRef Expression
1 rexlimdvw.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21a1d 22 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
32rexlimdv 2582 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449  df-rex 2450
This theorem is referenced by:  nnpredcl  4600  qsss  6560  fodjuomnilemdc  7108  ltpopr  7536  ltsopr  7537  ltexprlemlol  7543  ltexprlemupu  7545  cauappcvgprlemrnd  7591  caucvgprlemrnd  7614  caucvgprprlemrnd  7642  suplocexprlemss  7656  suplocexprlemrl  7658  suplocsrlempr  7748  climuni  11234  cncnp2m  12871  bj-findis  13861
  Copyright terms: Public domain W3C validator