ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvw Unicode version

Theorem rexlimdvw 2608
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rexlimdvw.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
rexlimdvw  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rexlimdvw
StepHypRef Expression
1 rexlimdvw.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21a1d 22 . 2  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
32rexlimdv 2603 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158   E.wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-ral 2470  df-rex 2471
This theorem is referenced by:  nnpredcl  4634  qsss  6608  fodjuomnilemdc  7156  ltpopr  7608  ltsopr  7609  ltexprlemlol  7615  ltexprlemupu  7617  cauappcvgprlemrnd  7663  caucvgprlemrnd  7686  caucvgprprlemrnd  7714  suplocexprlemss  7728  suplocexprlemrl  7730  suplocsrlempr  7820  climuni  11315  lspsnel  13606  cncnp2m  14027  bj-findis  15027
  Copyright terms: Public domain W3C validator