Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suplocexprlemru | Unicode version |
Description: Lemma for suplocexpr 7680. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.) |
Ref | Expression |
---|---|
suplocexpr.m | |
suplocexpr.ub | |
suplocexpr.loc | |
suplocexpr.b |
Ref | Expression |
---|---|
suplocexprlemru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplocexpr.m | . . . . . . . . . . . 12 | |
2 | suplocexpr.ub | . . . . . . . . . . . 12 | |
3 | suplocexpr.loc | . . . . . . . . . . . 12 | |
4 | 1, 2, 3 | suplocexprlemss 7670 | . . . . . . . . . . 11 |
5 | suplocexpr.b | . . . . . . . . . . . 12 | |
6 | 5 | suplocexprlem2b 7669 | . . . . . . . . . . 11 |
7 | 4, 6 | syl 14 | . . . . . . . . . 10 |
8 | 7 | eleq2d 2240 | . . . . . . . . 9 |
9 | 8 | adantr 274 | . . . . . . . 8 |
10 | 9 | biimpa 294 | . . . . . . 7 |
11 | breq2 3991 | . . . . . . . . 9 | |
12 | 11 | rexbidv 2471 | . . . . . . . 8 |
13 | 12 | elrab 2886 | . . . . . . 7 |
14 | 10, 13 | sylib 121 | . . . . . 6 |
15 | 14 | simprd 113 | . . . . 5 |
16 | ltbtwnnqq 7370 | . . . . . . . 8 | |
17 | 16 | biimpi 119 | . . . . . . 7 |
18 | 17 | ad2antll 488 | . . . . . 6 |
19 | simprr 527 | . . . . . . . . 9 | |
20 | breq2 3991 | . . . . . . . . . . . 12 | |
21 | 20 | rexbidv 2471 | . . . . . . . . . . 11 |
22 | simplr 525 | . . . . . . . . . . 11 | |
23 | simprl 526 | . . . . . . . . . . . . . 14 | |
24 | 23 | ad2antrr 485 | . . . . . . . . . . . . 13 |
25 | simprl 526 | . . . . . . . . . . . . 13 | |
26 | 24, 25 | jca 304 | . . . . . . . . . . . 12 |
27 | rspe 2519 | . . . . . . . . . . . 12 | |
28 | 26, 27 | syl 14 | . . . . . . . . . . 11 |
29 | 21, 22, 28 | elrabd 2888 | . . . . . . . . . 10 |
30 | 7 | eleq2d 2240 | . . . . . . . . . . 11 |
31 | 30 | ad5antr 493 | . . . . . . . . . 10 |
32 | 29, 31 | mpbird 166 | . . . . . . . . 9 |
33 | 19, 32 | jca 304 | . . . . . . . 8 |
34 | 33 | ex 114 | . . . . . . 7 |
35 | 34 | reximdva 2572 | . . . . . 6 |
36 | 18, 35 | mpd 13 | . . . . 5 |
37 | 15, 36 | rexlimddv 2592 | . . . 4 |
38 | 37 | ex 114 | . . 3 |
39 | simpllr 529 | . . . . . 6 | |
40 | simprr 527 | . . . . . . . . . 10 | |
41 | 30 | ad3antrrr 489 | . . . . . . . . . 10 |
42 | 40, 41 | mpbid 146 | . . . . . . . . 9 |
43 | 21 | elrab 2886 | . . . . . . . . 9 |
44 | 42, 43 | sylib 121 | . . . . . . . 8 |
45 | 44 | simprd 113 | . . . . . . 7 |
46 | simpr 109 | . . . . . . . . . . 11 | |
47 | simprl 526 | . . . . . . . . . . . 12 | |
48 | 47 | ad2antrr 485 | . . . . . . . . . . 11 |
49 | 46, 48 | jca 304 | . . . . . . . . . 10 |
50 | ltrelnq 7320 | . . . . . . . . . . . . . 14 | |
51 | 50 | brel 4661 | . . . . . . . . . . . . 13 |
52 | 51 | simpld 111 | . . . . . . . . . . . 12 |
53 | 52 | adantl 275 | . . . . . . . . . . 11 |
54 | simp-4r 537 | . . . . . . . . . . 11 | |
55 | 39 | ad2antrr 485 | . . . . . . . . . . 11 |
56 | ltsonq 7353 | . . . . . . . . . . . 12 | |
57 | sotr 4301 | . . . . . . . . . . . 12 | |
58 | 56, 57 | mpan 422 | . . . . . . . . . . 11 |
59 | 53, 54, 55, 58 | syl3anc 1233 | . . . . . . . . . 10 |
60 | 49, 59 | mpd 13 | . . . . . . . . 9 |
61 | 60 | ex 114 | . . . . . . . 8 |
62 | 61 | reximdva 2572 | . . . . . . 7 |
63 | 45, 62 | mpd 13 | . . . . . 6 |
64 | 12, 39, 63 | elrabd 2888 | . . . . 5 |
65 | 8 | ad3antrrr 489 | . . . . 5 |
66 | 64, 65 | mpbird 166 | . . . 4 |
67 | 66 | rexlimdva2 2590 | . . 3 |
68 | 38, 67 | impbid 128 | . 2 |
69 | 68 | ralrimiva 2543 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 wss 3121 cop 3584 cuni 3794 cint 3829 class class class wbr 3987 wor 4278 cima 4612 cfv 5196 c1st 6115 c2nd 6116 cnq 7235 cltq 7240 cnp 7246 cltp 7250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-1o 6393 df-oadd 6397 df-omul 6398 df-er 6511 df-ec 6513 df-qs 6517 df-ni 7259 df-pli 7260 df-mi 7261 df-lti 7262 df-plpq 7299 df-mpq 7300 df-enq 7302 df-nqqs 7303 df-plqqs 7304 df-mqqs 7305 df-1nqqs 7306 df-rq 7307 df-ltnqqs 7308 df-inp 7421 df-iltp 7425 |
This theorem is referenced by: suplocexprlemex 7677 |
Copyright terms: Public domain | W3C validator |