ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemru Unicode version

Theorem suplocexprlemru 7736
Description: Lemma for suplocexpr 7742. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemru  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Distinct variable groups:    A, q, u   
x, A, y    B, q, w    ph, q, r, w    ph, x, y    u, r, w
Allowed substitution hints:    ph( z, u)    A( z, w, r)    B( x, y, z, u, r)

Proof of Theorem suplocexprlemru
StepHypRef Expression
1 suplocexpr.m . . . . . . . . . . . 12  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . . . . . . 12  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7732 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  P. )
5 suplocexpr.b . . . . . . . . . . . 12  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
65suplocexprlem2b 7731 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
74, 6syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87eleq2d 2259 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  ( 2nd `  B )  <-> 
r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
98adantr 276 . . . . . . . 8  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  r  e.  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
109biimpa 296 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
11 breq2 4022 . . . . . . . . 9  |-  ( u  =  r  ->  (
w  <Q  u  <->  w  <Q  r ) )
1211rexbidv 2491 . . . . . . . 8  |-  ( u  =  r  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1312elrab 2908 . . . . . . 7  |-  ( r  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( r  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1410, 13sylib 122 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  (
r  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  r ) )
1514simprd 114 . . . . 5  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
16 ltbtwnnqq 7432 . . . . . . . 8  |-  ( w 
<Q  r  <->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r ) )
1716biimpi 120 . . . . . . 7  |-  ( w 
<Q  r  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
1817ad2antll 491 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
19 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  <Q  r )
20 breq2 4022 . . . . . . . . . . . 12  |-  ( u  =  q  ->  (
w  <Q  u  <->  w  <Q  q ) )
2120rexbidv 2491 . . . . . . . . . . 11  |-  ( u  =  q  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
22 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  Q. )
23 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  w  e.  |^| ( 2nd " A
) )
2423ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  e.  |^| ( 2nd " A
) )
25 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  <Q  q )
2624, 25jca 306 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  q ) )
27 rspe 2539 . . . . . . . . . . . 12  |-  ( ( w  e.  |^| ( 2nd " A )  /\  w  <Q  q )  ->  E. w  e.  |^| ( 2nd " A ) w 
<Q  q )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
2921, 22, 28elrabd 2910 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
307eleq2d 2259 . . . . . . . . . . 11  |-  ( ph  ->  ( q  e.  ( 2nd `  B )  <-> 
q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
3130ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
3229, 31mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  ( 2nd `  B
) )
3319, 32jca 306 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )
3433ex 115 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  /\  q  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
3534reximdva 2592 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  ( E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3618, 35mpd 13 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3715, 36rexlimddv 2612 . . . 4  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3837ex 115 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
39 simpllr 534 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  Q. )
40 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  ( 2nd `  B
) )
4130ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
4240, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
4321elrab 2908 . . . . . . . . 9  |-  ( q  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( q  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
4442, 43sylib 122 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  q ) )
4544simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
46 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  q )
47 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  <Q  r )
4847ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  <Q  r )
4946, 48jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( w  <Q  q  /\  q  <Q  r ) )
50 ltrelnq 7382 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
5150brel 4693 . . . . . . . . . . . . 13  |-  ( w 
<Q  q  ->  ( w  e.  Q.  /\  q  e.  Q. ) )
5251simpld 112 . . . . . . . . . . . 12  |-  ( w 
<Q  q  ->  w  e. 
Q. )
5352adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  e.  Q. )
54 simp-4r 542 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  e.  Q. )
5539ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
r  e.  Q. )
56 ltsonq 7415 . . . . . . . . . . . 12  |-  <Q  Or  Q.
57 sotr 4333 . . . . . . . . . . . 12  |-  ( ( 
<Q  Or  Q.  /\  (
w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. ) )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
5856, 57mpan 424 . . . . . . . . . . 11  |-  ( ( w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  w  <Q  r
) )
5953, 54, 55, 58syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
6049, 59mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  r )
6160ex 115 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  /\  w  e.  |^| ( 2nd " A
) )  ->  (
w  <Q  q  ->  w  <Q  r ) )
6261reximdva 2592 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  q  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
) )
6345, 62mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
6412, 39, 63elrabd 2910 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
658ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
r  e.  ( 2nd `  B )  <->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
6664, 65mpbird 167 . . . 4  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  ( 2nd `  B
) )
6766rexlimdva2 2610 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) )  ->  r  e.  ( 2nd `  B
) ) )
6838, 67impbid 129 . 2  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
6968ralrimiva 2563 1  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469   {crab 2472    C_ wss 3144   <.cop 3610   U.cuni 3824   |^|cint 3859   class class class wbr 4018    Or wor 4310   "cima 4644   ` cfv 5231   1stc1st 6157   2ndc2nd 6158   Q.cnq 7297    <Q cltq 7302   P.cnp 7308    <P cltp 7312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-1o 6435  df-oadd 6439  df-omul 6440  df-er 6553  df-ec 6555  df-qs 6559  df-ni 7321  df-pli 7322  df-mi 7323  df-lti 7324  df-plpq 7361  df-mpq 7362  df-enq 7364  df-nqqs 7365  df-plqqs 7366  df-mqqs 7367  df-1nqqs 7368  df-rq 7369  df-ltnqqs 7370  df-inp 7483  df-iltp 7487
This theorem is referenced by:  suplocexprlemex  7739
  Copyright terms: Public domain W3C validator