ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemru Unicode version

Theorem suplocexprlemru 7720
Description: Lemma for suplocexpr 7726. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemru  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Distinct variable groups:    A, q, u   
x, A, y    B, q, w    ph, q, r, w    ph, x, y    u, r, w
Allowed substitution hints:    ph( z, u)    A( z, w, r)    B( x, y, z, u, r)

Proof of Theorem suplocexprlemru
StepHypRef Expression
1 suplocexpr.m . . . . . . . . . . . 12  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . . . . . . 12  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7716 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  P. )
5 suplocexpr.b . . . . . . . . . . . 12  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
65suplocexprlem2b 7715 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
74, 6syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87eleq2d 2247 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  ( 2nd `  B )  <-> 
r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
98adantr 276 . . . . . . . 8  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  r  e.  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
109biimpa 296 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
11 breq2 4009 . . . . . . . . 9  |-  ( u  =  r  ->  (
w  <Q  u  <->  w  <Q  r ) )
1211rexbidv 2478 . . . . . . . 8  |-  ( u  =  r  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1312elrab 2895 . . . . . . 7  |-  ( r  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( r  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1410, 13sylib 122 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  (
r  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  r ) )
1514simprd 114 . . . . 5  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
16 ltbtwnnqq 7416 . . . . . . . 8  |-  ( w 
<Q  r  <->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r ) )
1716biimpi 120 . . . . . . 7  |-  ( w 
<Q  r  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
1817ad2antll 491 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
19 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  <Q  r )
20 breq2 4009 . . . . . . . . . . . 12  |-  ( u  =  q  ->  (
w  <Q  u  <->  w  <Q  q ) )
2120rexbidv 2478 . . . . . . . . . . 11  |-  ( u  =  q  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
22 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  Q. )
23 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  w  e.  |^| ( 2nd " A
) )
2423ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  e.  |^| ( 2nd " A
) )
25 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  <Q  q )
2624, 25jca 306 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  q ) )
27 rspe 2526 . . . . . . . . . . . 12  |-  ( ( w  e.  |^| ( 2nd " A )  /\  w  <Q  q )  ->  E. w  e.  |^| ( 2nd " A ) w 
<Q  q )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
2921, 22, 28elrabd 2897 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
307eleq2d 2247 . . . . . . . . . . 11  |-  ( ph  ->  ( q  e.  ( 2nd `  B )  <-> 
q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
3130ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
3229, 31mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  ( 2nd `  B
) )
3319, 32jca 306 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )
3433ex 115 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  /\  q  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
3534reximdva 2579 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  ( E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3618, 35mpd 13 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3715, 36rexlimddv 2599 . . . 4  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3837ex 115 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
39 simpllr 534 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  Q. )
40 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  ( 2nd `  B
) )
4130ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
4240, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
4321elrab 2895 . . . . . . . . 9  |-  ( q  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( q  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
4442, 43sylib 122 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  q ) )
4544simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
46 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  q )
47 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  <Q  r )
4847ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  <Q  r )
4946, 48jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( w  <Q  q  /\  q  <Q  r ) )
50 ltrelnq 7366 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
5150brel 4680 . . . . . . . . . . . . 13  |-  ( w 
<Q  q  ->  ( w  e.  Q.  /\  q  e.  Q. ) )
5251simpld 112 . . . . . . . . . . . 12  |-  ( w 
<Q  q  ->  w  e. 
Q. )
5352adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  e.  Q. )
54 simp-4r 542 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  e.  Q. )
5539ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
r  e.  Q. )
56 ltsonq 7399 . . . . . . . . . . . 12  |-  <Q  Or  Q.
57 sotr 4320 . . . . . . . . . . . 12  |-  ( ( 
<Q  Or  Q.  /\  (
w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. ) )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
5856, 57mpan 424 . . . . . . . . . . 11  |-  ( ( w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  w  <Q  r
) )
5953, 54, 55, 58syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
6049, 59mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  r )
6160ex 115 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  /\  w  e.  |^| ( 2nd " A
) )  ->  (
w  <Q  q  ->  w  <Q  r ) )
6261reximdva 2579 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  q  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
) )
6345, 62mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
6412, 39, 63elrabd 2897 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
658ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
r  e.  ( 2nd `  B )  <->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
6664, 65mpbird 167 . . . 4  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  ( 2nd `  B
) )
6766rexlimdva2 2597 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) )  ->  r  e.  ( 2nd `  B
) ) )
6838, 67impbid 129 . 2  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
6968ralrimiva 2550 1  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3131   <.cop 3597   U.cuni 3811   |^|cint 3846   class class class wbr 4005    Or wor 4297   "cima 4631   ` cfv 5218   1stc1st 6141   2ndc2nd 6142   Q.cnq 7281    <Q cltq 7286   P.cnp 7292    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-inp 7467  df-iltp 7471
This theorem is referenced by:  suplocexprlemex  7723
  Copyright terms: Public domain W3C validator