ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemru Unicode version

Theorem suplocexprlemru 7551
Description: Lemma for suplocexpr 7557. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemru  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Distinct variable groups:    A, q, u   
x, A, y    B, q, w    ph, q, r, w    ph, x, y    u, r, w
Allowed substitution hints:    ph( z, u)    A( z, w, r)    B( x, y, z, u, r)

Proof of Theorem suplocexprlemru
StepHypRef Expression
1 suplocexpr.m . . . . . . . . . . . 12  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . . . . . . 12  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7547 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  P. )
5 suplocexpr.b . . . . . . . . . . . 12  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
65suplocexprlem2b 7546 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
74, 6syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87eleq2d 2210 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  ( 2nd `  B )  <-> 
r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
98adantr 274 . . . . . . . 8  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  r  e.  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
109biimpa 294 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
11 breq2 3941 . . . . . . . . 9  |-  ( u  =  r  ->  (
w  <Q  u  <->  w  <Q  r ) )
1211rexbidv 2439 . . . . . . . 8  |-  ( u  =  r  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1312elrab 2844 . . . . . . 7  |-  ( r  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( r  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1410, 13sylib 121 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  (
r  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  r ) )
1514simprd 113 . . . . 5  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
16 ltbtwnnqq 7247 . . . . . . . 8  |-  ( w 
<Q  r  <->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r ) )
1716biimpi 119 . . . . . . 7  |-  ( w 
<Q  r  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
1817ad2antll 483 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
19 simprr 522 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  <Q  r )
20 breq2 3941 . . . . . . . . . . . 12  |-  ( u  =  q  ->  (
w  <Q  u  <->  w  <Q  q ) )
2120rexbidv 2439 . . . . . . . . . . 11  |-  ( u  =  q  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
22 simplr 520 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  Q. )
23 simprl 521 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  w  e.  |^| ( 2nd " A
) )
2423ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  e.  |^| ( 2nd " A
) )
25 simprl 521 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  <Q  q )
2624, 25jca 304 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  q ) )
27 rspe 2484 . . . . . . . . . . . 12  |-  ( ( w  e.  |^| ( 2nd " A )  /\  w  <Q  q )  ->  E. w  e.  |^| ( 2nd " A ) w 
<Q  q )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
2921, 22, 28elrabd 2846 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
307eleq2d 2210 . . . . . . . . . . 11  |-  ( ph  ->  ( q  e.  ( 2nd `  B )  <-> 
q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
3130ad5antr 488 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
3229, 31mpbird 166 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  ( 2nd `  B
) )
3319, 32jca 304 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )
3433ex 114 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  /\  q  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
3534reximdva 2537 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  ( E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3618, 35mpd 13 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3715, 36rexlimddv 2557 . . . 4  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3837ex 114 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
39 simpllr 524 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  Q. )
40 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  ( 2nd `  B
) )
4130ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
4240, 41mpbid 146 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
4321elrab 2844 . . . . . . . . 9  |-  ( q  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( q  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
4442, 43sylib 121 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  q ) )
4544simprd 113 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
46 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  q )
47 simprl 521 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  <Q  r )
4847ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  <Q  r )
4946, 48jca 304 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( w  <Q  q  /\  q  <Q  r ) )
50 ltrelnq 7197 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
5150brel 4599 . . . . . . . . . . . . 13  |-  ( w 
<Q  q  ->  ( w  e.  Q.  /\  q  e.  Q. ) )
5251simpld 111 . . . . . . . . . . . 12  |-  ( w 
<Q  q  ->  w  e. 
Q. )
5352adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  e.  Q. )
54 simp-4r 532 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  e.  Q. )
5539ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
r  e.  Q. )
56 ltsonq 7230 . . . . . . . . . . . 12  |-  <Q  Or  Q.
57 sotr 4248 . . . . . . . . . . . 12  |-  ( ( 
<Q  Or  Q.  /\  (
w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. ) )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
5856, 57mpan 421 . . . . . . . . . . 11  |-  ( ( w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  w  <Q  r
) )
5953, 54, 55, 58syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
6049, 59mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  r )
6160ex 114 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  /\  w  e.  |^| ( 2nd " A
) )  ->  (
w  <Q  q  ->  w  <Q  r ) )
6261reximdva 2537 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  q  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
) )
6345, 62mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
6412, 39, 63elrabd 2846 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
658ad3antrrr 484 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
r  e.  ( 2nd `  B )  <->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
6664, 65mpbird 166 . . . 4  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  ( 2nd `  B
) )
6766rexlimdva2 2555 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) )  ->  r  e.  ( 2nd `  B
) ) )
6838, 67impbid 128 . 2  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
6968ralrimiva 2508 1  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421    C_ wss 3076   <.cop 3535   U.cuni 3744   |^|cint 3779   class class class wbr 3937    Or wor 4225   "cima 4550   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    <Q cltq 7117   P.cnp 7123    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-iltp 7302
This theorem is referenced by:  suplocexprlemex  7554
  Copyright terms: Public domain W3C validator