ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemru Unicode version

Theorem suplocexprlemru 7779
Description: Lemma for suplocexpr 7785. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemru  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Distinct variable groups:    A, q, u   
x, A, y    B, q, w    ph, q, r, w    ph, x, y    u, r, w
Allowed substitution hints:    ph( z, u)    A( z, w, r)    B( x, y, z, u, r)

Proof of Theorem suplocexprlemru
StepHypRef Expression
1 suplocexpr.m . . . . . . . . . . . 12  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . . . . . . . . . . 12  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
41, 2, 3suplocexprlemss 7775 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  P. )
5 suplocexpr.b . . . . . . . . . . . 12  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
65suplocexprlem2b 7774 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
74, 6syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
87eleq2d 2263 . . . . . . . . 9  |-  ( ph  ->  ( r  e.  ( 2nd `  B )  <-> 
r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
98adantr 276 . . . . . . . 8  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  r  e.  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
109biimpa 296 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
11 breq2 4033 . . . . . . . . 9  |-  ( u  =  r  ->  (
w  <Q  u  <->  w  <Q  r ) )
1211rexbidv 2495 . . . . . . . 8  |-  ( u  =  r  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1312elrab 2916 . . . . . . 7  |-  ( r  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( r  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  r )
)
1410, 13sylib 122 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  (
r  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  r ) )
1514simprd 114 . . . . 5  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
16 ltbtwnnqq 7475 . . . . . . . 8  |-  ( w 
<Q  r  <->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r ) )
1716biimpi 120 . . . . . . 7  |-  ( w 
<Q  r  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
1817ad2antll 491 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r
) )
19 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  <Q  r )
20 breq2 4033 . . . . . . . . . . . 12  |-  ( u  =  q  ->  (
w  <Q  u  <->  w  <Q  q ) )
2120rexbidv 2495 . . . . . . . . . . 11  |-  ( u  =  q  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
22 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  Q. )
23 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  w  e.  |^| ( 2nd " A
) )
2423ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  e.  |^| ( 2nd " A
) )
25 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  w  <Q  q )
2624, 25jca 306 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  q ) )
27 rspe 2543 . . . . . . . . . . . 12  |-  ( ( w  e.  |^| ( 2nd " A )  /\  w  <Q  q )  ->  E. w  e.  |^| ( 2nd " A ) w 
<Q  q )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
2921, 22, 28elrabd 2918 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
307eleq2d 2263 . . . . . . . . . . 11  |-  ( ph  ->  ( q  e.  ( 2nd `  B )  <-> 
q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
3130ad5antr 496 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
3229, 31mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  q  e.  ( 2nd `  B
) )
3319, 32jca 306 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  /\  (
w  e.  |^| ( 2nd " A )  /\  w  <Q  r ) )  /\  q  e.  Q. )  /\  ( w  <Q  q  /\  q  <Q  r
) )  ->  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )
3433ex 115 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  /\  q  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
3534reximdva 2596 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  ( E. q  e.  Q.  ( w  <Q  q  /\  q  <Q  r )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
3618, 35mpd 13 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B ) )  /\  ( w  e. 
|^| ( 2nd " A
)  /\  w  <Q  r ) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3715, 36rexlimddv 2616 . . . 4  |-  ( ( ( ph  /\  r  e.  Q. )  /\  r  e.  ( 2nd `  B
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )
3837ex 115 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) ) )
39 simpllr 534 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  Q. )
40 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  ( 2nd `  B
) )
4130ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  ( 2nd `  B )  <->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
4240, 41mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
4321elrab 2916 . . . . . . . . 9  |-  ( q  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( q  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  q )
)
4442, 43sylib 122 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
q  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  q ) )
4544simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  q
)
46 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  q )
47 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  q  <Q  r )
4847ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  <Q  r )
4946, 48jca 306 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( w  <Q  q  /\  q  <Q  r ) )
50 ltrelnq 7425 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
5150brel 4711 . . . . . . . . . . . . 13  |-  ( w 
<Q  q  ->  ( w  e.  Q.  /\  q  e.  Q. ) )
5251simpld 112 . . . . . . . . . . . 12  |-  ( w 
<Q  q  ->  w  e. 
Q. )
5352adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  e.  Q. )
54 simp-4r 542 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
q  e.  Q. )
5539ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
r  e.  Q. )
56 ltsonq 7458 . . . . . . . . . . . 12  |-  <Q  Or  Q.
57 sotr 4349 . . . . . . . . . . . 12  |-  ( ( 
<Q  Or  Q.  /\  (
w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. ) )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
5856, 57mpan 424 . . . . . . . . . . 11  |-  ( ( w  e.  Q.  /\  q  e.  Q.  /\  r  e.  Q. )  ->  (
( w  <Q  q  /\  q  <Q  r )  ->  w  <Q  r
) )
5953, 54, 55, 58syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  -> 
( ( w  <Q  q  /\  q  <Q  r
)  ->  w  <Q  r ) )
6049, 59mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) ) )  /\  w  e.  |^| ( 2nd " A ) )  /\  w  <Q  q )  ->  w  <Q  r )
6160ex 115 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  /\  w  e.  |^| ( 2nd " A
) )  ->  (
w  <Q  q  ->  w  <Q  r ) )
6261reximdva 2596 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  q  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
) )
6345, 62mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  E. w  e.  |^| ( 2nd " A
) w  <Q  r
)
6412, 39, 63elrabd 2918 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
)
658ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  (
r  e.  ( 2nd `  B )  <->  r  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } ) )
6664, 65mpbird 167 . . . 4  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  q  e.  Q. )  /\  ( q  <Q 
r  /\  q  e.  ( 2nd `  B ) ) )  ->  r  e.  ( 2nd `  B
) )
6766rexlimdva2 2614 . . 3  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. q  e.  Q.  (
q  <Q  r  /\  q  e.  ( 2nd `  B
) )  ->  r  e.  ( 2nd `  B
) ) )
6838, 67impbid 129 . 2  |-  ( (
ph  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
6968ralrimiva 2567 1  |-  ( ph  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3153   <.cop 3621   U.cuni 3835   |^|cint 3870   class class class wbr 4029    Or wor 4326   "cima 4662   ` cfv 5254   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    <Q cltq 7345   P.cnp 7351    <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526  df-iltp 7530
This theorem is referenced by:  suplocexprlemex  7782
  Copyright terms: Public domain W3C validator