![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexsns | GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.) |
Ref | Expression |
---|---|
rexsns | ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3461 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | 1 | anbi1i 446 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑)) |
3 | 2 | exbii 1541 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
4 | df-rex 2365 | . 2 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑)) | |
5 | sbc5 2863 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3bitr4i 210 | 1 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1289 ∃wex 1426 ∈ wcel 1438 ∃wrex 2360 [wsbc 2840 {csn 3444 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-v 2621 df-sbc 2841 df-sn 3450 |
This theorem is referenced by: rexsng 3482 r19.12sn 3506 iunxsngf 3805 finexdc 6608 exfzdc 9639 |
Copyright terms: Public domain | W3C validator |