ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsns GIF version

Theorem rexsns 3661
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
rexsns (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsns
StepHypRef Expression
1 velsn 3639 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21anbi1i 458 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ (𝑥 = 𝐴𝜑))
32exbii 1619 . 2 (∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
4 df-rex 2481 . 2 (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑))
5 sbc5 3013 . 2 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
63, 4, 53bitr4i 212 1 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  wrex 2476  [wsbc 2989  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-sn 3628
This theorem is referenced by:  rexsng  3663  r19.12sn  3688  iunxsngf  3994  finexdc  6963  exfzdc  10316
  Copyright terms: Public domain W3C validator