ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsns GIF version

Theorem rexsns 3594
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
rexsns (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsns
StepHypRef Expression
1 velsn 3573 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21anbi1i 454 . . 3 ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ (𝑥 = 𝐴𝜑))
32exbii 1582 . 2 (∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
4 df-rex 2438 . 2 (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝐴} ∧ 𝜑))
5 sbc5 2956 . 2 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
63, 4, 53bitr4i 211 1 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wex 1469  wcel 2125  wrex 2433  [wsbc 2933  {csn 3556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-v 2711  df-sbc 2934  df-sn 3562
This theorem is referenced by:  rexsng  3596  r19.12sn  3621  iunxsngf  3922  finexdc  6836  exfzdc  10117
  Copyright terms: Public domain W3C validator