ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota2f Unicode version

Theorem riota2f 5899
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2f.1  |-  F/_ x B
riota2f.2  |-  F/ x ps
riota2f.3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
riota2f  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)

Proof of Theorem riota2f
StepHypRef Expression
1 riota2f.1 . . 3  |-  F/_ x B
21nfel1 2350 . 2  |-  F/ x  B  e.  A
31a1i 9 . 2  |-  ( B  e.  A  ->  F/_ x B )
4 riota2f.2 . . 3  |-  F/ x ps
54a1i 9 . 2  |-  ( B  e.  A  ->  F/ x ps )
6 id 19 . 2  |-  ( B  e.  A  ->  B  e.  A )
7 riota2f.3 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
87adantl 277 . 2  |-  ( ( B  e.  A  /\  x  =  B )  ->  ( ph  <->  ps )
)
92, 3, 5, 6, 8riota2df 5898 1  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474    e. wcel 2167   F/_wnfc 2326   E!wreu 2477   iota_crio 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219  df-riota 5877
This theorem is referenced by:  riota2  5900  riotaprop  5901  riotass2  5904  riotass  5905
  Copyright terms: Public domain W3C validator