| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2f | Unicode version | ||
| Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression |
| Ref | Expression |
|---|---|
| riota2f.1 |
|
| riota2f.2 |
|
| riota2f.3 |
|
| Ref | Expression |
|---|---|
| riota2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2f.1 |
. . 3
| |
| 2 | 1 | nfel1 2350 |
. 2
|
| 3 | 1 | a1i 9 |
. 2
|
| 4 | riota2f.2 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | id 19 |
. 2
| |
| 7 | riota2f.3 |
. . 3
| |
| 8 | 7 | adantl 277 |
. 2
|
| 9 | 2, 3, 5, 6, 8 | riota2df 5901 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3629 df-pr 3630 df-uni 3841 df-iota 5220 df-riota 5880 |
| This theorem is referenced by: riota2 5903 riotaprop 5904 riotass2 5907 riotass 5908 |
| Copyright terms: Public domain | W3C validator |