Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riota2f | Unicode version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression . (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2f.1 | |
riota2f.2 | |
riota2f.3 |
Ref | Expression |
---|---|
riota2f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2f.1 | . . 3 | |
2 | 1 | nfel1 2319 | . 2 |
3 | 1 | a1i 9 | . 2 |
4 | riota2f.2 | . . 3 | |
5 | 4 | a1i 9 | . 2 |
6 | id 19 | . 2 | |
7 | riota2f.3 | . . 3 | |
8 | 7 | adantl 275 | . 2 |
9 | 2, 3, 5, 6, 8 | riota2df 5818 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wnf 1448 wcel 2136 wnfc 2295 wreu 2446 crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: riota2 5820 riotaprop 5821 riotass2 5824 riotass 5825 |
Copyright terms: Public domain | W3C validator |