| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2f | Unicode version | ||
| Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression |
| Ref | Expression |
|---|---|
| riota2f.1 |
|
| riota2f.2 |
|
| riota2f.3 |
|
| Ref | Expression |
|---|---|
| riota2f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2f.1 |
. . 3
| |
| 2 | 1 | nfel1 2359 |
. 2
|
| 3 | 1 | a1i 9 |
. 2
|
| 4 | riota2f.2 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | id 19 |
. 2
| |
| 7 | riota2f.3 |
. . 3
| |
| 8 | 7 | adantl 277 |
. 2
|
| 9 | 2, 3, 5, 6, 8 | riota2df 5922 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5233 df-riota 5901 |
| This theorem is referenced by: riota2 5924 riotaprop 5925 riotass2 5928 riotass 5929 |
| Copyright terms: Public domain | W3C validator |