![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version |
Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression ![]() |
Ref | Expression |
---|---|
riota2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
riota2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
3 | riota2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | riota2f 5896 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-reu 2479 df-v 2762 df-sbc 2987 df-un 3158 df-sn 3625 df-pr 3626 df-uni 3837 df-iota 5216 df-riota 5874 |
This theorem is referenced by: eqsupti 7057 prsrriota 7850 recriota 7952 axcaucvglemval 7959 subadd 8224 divmulap 8696 flqlelt 10348 flqbi 10362 remim 11007 resqrtcl 11176 rersqrtthlem 11177 divalgmod 12071 dfgcd3 12150 bezout 12151 oddpwdclemxy 12310 qnumdenbi 12333 ismgmid 12963 isgrpinv 13129 |
Copyright terms: Public domain | W3C validator |