| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version | ||
| Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression |
| Ref | Expression |
|---|---|
| riota2.1 |
|
| Ref | Expression |
|---|---|
| riota2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfv 1551 |
. 2
| |
| 3 | riota2.1 |
. 2
| |
| 4 | 1, 2, 3 | riota2f 5923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5233 df-riota 5901 |
| This theorem is referenced by: eqsupti 7100 prsrriota 7903 recriota 8005 axcaucvglemval 8012 subadd 8277 divmulap 8750 flqlelt 10421 flqbi 10435 remim 11204 resqrtcl 11373 rersqrtthlem 11374 divalgmod 12271 dfgcd3 12364 bezout 12365 oddpwdclemxy 12524 qnumdenbi 12547 ismgmid 13242 isgrpinv 13419 |
| Copyright terms: Public domain | W3C validator |