| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version | ||
| Description: This theorem shows a
condition that allows us to represent a descriptor
       with a class expression  | 
| Ref | Expression | 
|---|---|
| riota2.1 | 
 | 
| Ref | Expression | 
|---|---|
| riota2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | 
. 2
 | |
| 2 | nfv 1542 | 
. 2
 | |
| 3 | riota2.1 | 
. 2
 | |
| 4 | 1, 2, 3 | riota2f 5899 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: eqsupti 7062 prsrriota 7855 recriota 7957 axcaucvglemval 7964 subadd 8229 divmulap 8702 flqlelt 10366 flqbi 10380 remim 11025 resqrtcl 11194 rersqrtthlem 11195 divalgmod 12092 dfgcd3 12177 bezout 12178 oddpwdclemxy 12337 qnumdenbi 12360 ismgmid 13020 isgrpinv 13186 | 
| Copyright terms: Public domain | W3C validator |