| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version | ||
| Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression |
| Ref | Expression |
|---|---|
| riota2.1 |
|
| Ref | Expression |
|---|---|
| riota2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfv 1552 |
. 2
| |
| 3 | riota2.1 |
. 2
| |
| 4 | 1, 2, 3 | riota2f 5944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-reu 2493 df-v 2778 df-sbc 3006 df-un 3178 df-sn 3649 df-pr 3650 df-uni 3865 df-iota 5251 df-riota 5922 |
| This theorem is referenced by: eqsupti 7124 prsrriota 7936 recriota 8038 axcaucvglemval 8045 subadd 8310 divmulap 8783 flqlelt 10456 flqbi 10470 remim 11286 resqrtcl 11455 rersqrtthlem 11456 divalgmod 12353 dfgcd3 12446 bezout 12447 oddpwdclemxy 12606 qnumdenbi 12629 ismgmid 13324 isgrpinv 13501 |
| Copyright terms: Public domain | W3C validator |