Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression . (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 |
Ref | Expression |
---|---|
riota2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 | |
2 | nfv 1516 | . 2 | |
3 | riota2.1 | . 2 | |
4 | 1, 2, 3 | riota2f 5819 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wreu 2446 crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: eqsupti 6961 prsrriota 7729 recriota 7831 axcaucvglemval 7838 subadd 8101 divmulap 8571 flqlelt 10211 flqbi 10225 remim 10802 resqrtcl 10971 rersqrtthlem 10972 divalgmod 11864 dfgcd3 11943 bezout 11944 oddpwdclemxy 12101 qnumdenbi 12124 ismgmid 12608 |
Copyright terms: Public domain | W3C validator |