Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression . (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
riota2.1 |
Ref | Expression |
---|---|
riota2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 | |
2 | nfv 1521 | . 2 | |
3 | riota2.1 | . 2 | |
4 | 1, 2, 3 | riota2f 5830 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wreu 2450 crio 5808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-riota 5809 |
This theorem is referenced by: eqsupti 6973 prsrriota 7750 recriota 7852 axcaucvglemval 7859 subadd 8122 divmulap 8592 flqlelt 10232 flqbi 10246 remim 10824 resqrtcl 10993 rersqrtthlem 10994 divalgmod 11886 dfgcd3 11965 bezout 11966 oddpwdclemxy 12123 qnumdenbi 12146 ismgmid 12631 isgrpinv 12756 |
Copyright terms: Public domain | W3C validator |