![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > riota2 | Unicode version |
Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression ![]() |
Ref | Expression |
---|---|
riota2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
riota2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2228 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1466 |
. 2
![]() ![]() ![]() ![]() | |
3 | riota2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | riota2f 5621 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-reu 2366 df-v 2621 df-sbc 2841 df-un 3003 df-sn 3450 df-pr 3451 df-uni 3652 df-iota 4975 df-riota 5600 |
This theorem is referenced by: eqsupti 6681 prsrriota 7323 recriota 7415 axcaucvglemval 7422 subadd 7675 divmulap 8132 flqlelt 9671 flqbi 9685 remim 10282 resqrtcl 10450 rersqrtthlem 10451 divalgmod 11192 dfgcd3 11264 bezout 11265 oddpwdclemxy 11412 qnumdenbi 11435 |
Copyright terms: Public domain | W3C validator |