| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotass2 | Unicode version | ||
| Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
| Ref | Expression |
|---|---|
| riotass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuss2 3484 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | riotasbc 5971 |
. . . . 5
| |
| 4 | riotacl 5970 |
. . . . . 6
| |
| 5 | rspsbc 3112 |
. . . . . . 7
| |
| 6 | sbcimg 3070 |
. . . . . . 7
| |
| 7 | 5, 6 | sylibd 149 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | 3, 8 | mpid 42 |
. . . 4
|
| 10 | 1, 2, 9 | sylc 62 |
. . 3
|
| 11 | 1, 4 | syl 14 |
. . . . 5
|
| 12 | ssel 3218 |
. . . . . 6
| |
| 13 | 12 | ad2antrr 488 |
. . . . 5
|
| 14 | 11, 13 | mpd 13 |
. . . 4
|
| 15 | simprr 531 |
. . . 4
| |
| 16 | nfriota1 5962 |
. . . . 5
| |
| 17 | 16 | nfsbc1 3046 |
. . . . 5
|
| 18 | sbceq1a 3038 |
. . . . 5
| |
| 19 | 16, 17, 18 | riota2f 5977 |
. . . 4
|
| 20 | 14, 15, 19 | syl2anc 411 |
. . 3
|
| 21 | 10, 20 | mpbid 147 |
. 2
|
| 22 | 21 | eqcomd 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-uni 3889 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |