| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotass2 | Unicode version | ||
| Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
| Ref | Expression |
|---|---|
| riotass2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuss2 3453 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | riotasbc 5917 |
. . . . 5
| |
| 4 | riotacl 5916 |
. . . . . 6
| |
| 5 | rspsbc 3081 |
. . . . . . 7
| |
| 6 | sbcimg 3040 |
. . . . . . 7
| |
| 7 | 5, 6 | sylibd 149 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | 3, 8 | mpid 42 |
. . . 4
|
| 10 | 1, 2, 9 | sylc 62 |
. . 3
|
| 11 | 1, 4 | syl 14 |
. . . . 5
|
| 12 | ssel 3187 |
. . . . . 6
| |
| 13 | 12 | ad2antrr 488 |
. . . . 5
|
| 14 | 11, 13 | mpd 13 |
. . . 4
|
| 15 | simprr 531 |
. . . 4
| |
| 16 | nfriota1 5909 |
. . . . 5
| |
| 17 | 16 | nfsbc1 3016 |
. . . . 5
|
| 18 | sbceq1a 3008 |
. . . . 5
| |
| 19 | 16, 17, 18 | riota2f 5923 |
. . . 4
|
| 20 | 14, 15, 19 | syl2anc 411 |
. . 3
|
| 21 | 10, 20 | mpbid 147 |
. 2
|
| 22 | 21 | eqcomd 2211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5233 df-riota 5901 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |