ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotaprop Unicode version

Theorem riotaprop 5946
Description: Properties of a restricted definite description operator. Todo (df-riota 5922 update): can some uses of riota2f 5944 be shortened with this? (Contributed by NM, 23-Nov-2013.)
Hypotheses
Ref Expression
riotaprop.0  |-  F/ x ps
riotaprop.1  |-  B  =  ( iota_ x  e.  A  ph )
riotaprop.2  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
riotaprop  |-  ( E! x  e.  A  ph  ->  ( B  e.  A  /\  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)

Proof of Theorem riotaprop
StepHypRef Expression
1 riotaprop.1 . . 3  |-  B  =  ( iota_ x  e.  A  ph )
2 riotacl 5937 . . 3  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
31, 2eqeltrid 2294 . 2  |-  ( E! x  e.  A  ph  ->  B  e.  A )
41eqcomi 2211 . . . 4  |-  ( iota_ x  e.  A  ph )  =  B
5 nfriota1 5930 . . . . . 6  |-  F/_ x
( iota_ x  e.  A  ph )
61, 5nfcxfr 2347 . . . . 5  |-  F/_ x B
7 riotaprop.0 . . . . 5  |-  F/ x ps
8 riotaprop.2 . . . . 5  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
96, 7, 8riota2f 5944 . . . 4  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  (
iota_ x  e.  A  ph )  =  B ) )
104, 9mpbiri 168 . . 3  |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ps )
113, 10mpancom 422 . 2  |-  ( E! x  e.  A  ph  ->  ps )
123, 11jca 306 1  |-  ( E! x  e.  A  ph  ->  ( B  e.  A  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1484    e. wcel 2178   E!wreu 2488   iota_crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by:  lble  9055
  Copyright terms: Public domain W3C validator