ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota2f GIF version

Theorem riota2f 5819
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2f.1 𝑥𝐵
riota2f.2 𝑥𝜓
riota2f.3 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
riota2f ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riota2f
StepHypRef Expression
1 riota2f.1 . . 3 𝑥𝐵
21nfel1 2319 . 2 𝑥 𝐵𝐴
31a1i 9 . 2 (𝐵𝐴𝑥𝐵)
4 riota2f.2 . . 3 𝑥𝜓
54a1i 9 . 2 (𝐵𝐴 → Ⅎ𝑥𝜓)
6 id 19 . 2 (𝐵𝐴𝐵𝐴)
7 riota2f.3 . . 3 (𝑥 = 𝐵 → (𝜑𝜓))
87adantl 275 . 2 ((𝐵𝐴𝑥 = 𝐵) → (𝜑𝜓))
92, 3, 5, 6, 8riota2df 5818 1 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wnf 1448  wcel 2136  wnfc 2295  ∃!wreu 2446  crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  riota2  5820  riotaprop  5821  riotass2  5824  riotass  5825
  Copyright terms: Public domain W3C validator