| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota2f | GIF version | ||
| Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota2f.1 | ⊢ Ⅎ𝑥𝐵 |
| riota2f.2 | ⊢ Ⅎ𝑥𝜓 |
| riota2f.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riota2f | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2f.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 2 | 1 | nfel1 2350 | . 2 ⊢ Ⅎ𝑥 𝐵 ∈ 𝐴 |
| 3 | 1 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝐵) |
| 4 | riota2f.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 4 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝜓) |
| 6 | id 19 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴) | |
| 7 | riota2f.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | adantl 277 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵) → (𝜑 ↔ 𝜓)) |
| 9 | 2, 3, 5, 6, 8 | riota2df 5898 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ∃!wreu 2477 ℩crio 5876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 |
| This theorem is referenced by: riota2 5900 riotaprop 5901 riotass2 5904 riotass 5905 |
| Copyright terms: Public domain | W3C validator |