| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplinv | Unicode version | ||
| Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| grplinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b |
. . . . 5
| |
| 2 | grpinv.p |
. . . . 5
| |
| 3 | grpinv.u |
. . . . 5
| |
| 4 | grpinv.n |
. . . . 5
| |
| 5 | 1, 2, 3, 4 | grpinvval 13375 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | 1, 2, 3 | grpinveu 13370 |
. . . 4
|
| 8 | riotacl2 5913 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | 6, 9 | eqeltrd 2282 |
. 2
|
| 11 | oveq1 5951 |
. . . . 5
| |
| 12 | 11 | eqeq1d 2214 |
. . . 4
|
| 13 | 12 | elrab 2929 |
. . 3
|
| 14 | 13 | simprbi 275 |
. 2
|
| 15 | 10, 14 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 |
| This theorem is referenced by: grprinv 13383 grpinvid1 13384 grpinvid2 13385 isgrpinv 13386 grplinvd 13387 grplrinv 13389 grpressid 13393 grplcan 13394 grpasscan2 13396 grpinvinv 13399 grpinvssd 13409 grpsubadd 13420 grplactcnv 13434 imasgrp 13447 ghmgrp 13454 mulgdirlem 13489 issubg2m 13525 isnsg3 13543 nmzsubg 13546 ssnmz 13547 eqger 13560 qusgrp 13568 conjghm 13612 ringnegr 13814 unitlinv 13888 lmodvneg1 14092 psrlinv 14446 |
| Copyright terms: Public domain | W3C validator |