ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplinv Unicode version

Theorem grplinv 13497
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grplinv  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )

Proof of Theorem grplinv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpinv.p . . . . 5  |-  .+  =  ( +g  `  G )
3 grpinv.u . . . . 5  |-  .0.  =  ( 0g `  G )
4 grpinv.n . . . . 5  |-  N  =  ( invg `  G )
51, 2, 3, 4grpinvval 13490 . . . 4  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
65adantl 277 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  =  ( iota_ y  e.  B  ( y 
.+  X )  =  .0.  ) )
71, 2, 3grpinveu 13485 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
8 riotacl2 5936 . . . 4  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  ->  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  )  e. 
{ y  e.  B  |  ( y  .+  X )  =  .0. 
} )
97, 8syl 14 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( iota_ y  e.  B  ( y  .+  X
)  =  .0.  )  e.  { y  e.  B  |  ( y  .+  X )  =  .0. 
} )
106, 9eqeltrd 2284 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  { y  e.  B  |  ( y  .+  X )  =  .0.  } )
11 oveq1 5974 . . . . 5  |-  ( y  =  ( N `  X )  ->  (
y  .+  X )  =  ( ( N `
 X )  .+  X ) )
1211eqeq1d 2216 . . . 4  |-  ( y  =  ( N `  X )  ->  (
( y  .+  X
)  =  .0.  <->  ( ( N `  X )  .+  X )  =  .0.  ) )
1312elrab 2936 . . 3  |-  ( ( N `  X )  e.  { y  e.  B  |  ( y 
.+  X )  =  .0.  }  <->  ( ( N `  X )  e.  B  /\  (
( N `  X
)  .+  X )  =  .0.  ) )
1413simprbi 275 . 2  |-  ( ( N `  X )  e.  { y  e.  B  |  ( y 
.+  X )  =  .0.  }  ->  (
( N `  X
)  .+  X )  =  .0.  )
1510, 14syl 14 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E!wreu 2488   {crab 2490   ` cfv 5290   iota_crio 5921  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451
This theorem is referenced by:  grprinv  13498  grpinvid1  13499  grpinvid2  13500  isgrpinv  13501  grplinvd  13502  grplrinv  13504  grpressid  13508  grplcan  13509  grpasscan2  13511  grpinvinv  13514  grpinvssd  13524  grpsubadd  13535  grplactcnv  13549  imasgrp  13562  ghmgrp  13569  mulgdirlem  13604  issubg2m  13640  isnsg3  13658  nmzsubg  13661  ssnmz  13662  eqger  13675  qusgrp  13683  conjghm  13727  ringnegr  13929  unitlinv  14003  lmodvneg1  14207  psrlinv  14561
  Copyright terms: Public domain W3C validator