ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl Unicode version

Theorem riotacl 5788
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3213 . 2  |-  { x  e.  A  |  ph }  C_  A
2 riotacl2 5787 . 2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
31, 2sseldi 3126 1  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   E!wreu 2437   {crab 2439   iota_crio 5773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-uni 3773  df-iota 5132  df-riota 5774
This theorem is referenced by:  riotaprop  5797  riotass2  5800  riotass  5801  acexmidlemcase  5813  supclti  6934  caucvgsrlemcl  7692  caucvgsrlemgt1  7698  axcaucvglemcl  7798  subval  8050  subcl  8057  divvalap  8530  divclap  8534  lbcl  8800  divfnzn  9512  flqcl  10154  flapcl  10156  cjval  10727  cjth  10728  cjf  10729  oddpwdclemodd  12026  oddpwdclemdc  12027  oddpwdc  12028  qnumdencl  12041  qnumdenbi  12046
  Copyright terms: Public domain W3C validator