ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl Unicode version

Theorem riotacl 5937
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
Assertion
Ref Expression
riotacl  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riotacl
StepHypRef Expression
1 ssrab2 3286 . 2  |-  { x  e.  A  |  ph }  C_  A
2 riotacl2 5936 . 2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
31, 2sselid 3199 1  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   E!wreu 2488   {crab 2490   iota_crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by:  riotaprop  5946  riotass2  5949  riotass  5950  acexmidlemcase  5962  supclti  7126  caucvgsrlemcl  7937  caucvgsrlemgt1  7943  axcaucvglemcl  8043  subval  8299  subcl  8306  divvalap  8782  divclap  8786  lbcl  9054  divfnzn  9777  flqcl  10453  flapcl  10455  cjval  11271  cjth  11272  cjf  11273  oddpwdclemodd  12609  oddpwdclemdc  12610  oddpwdc  12611  qnumdencl  12624  qnumdenbi  12629  ismgmid  13324  grpinvf  13494
  Copyright terms: Public domain W3C validator