ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc GIF version

Theorem riotasbc 5970
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3312 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
2 riotacl2 5968 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3222 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
4 df-sbc 3029 . 2 ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
53, 4sylibr 134 1 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  {cab 2215  ∃!wreu 2510  {crab 2512  [wsbc 3028  crio 5952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-uni 3888  df-iota 5277  df-riota 5953
This theorem is referenced by:  riotass2  5982  riotass  5983  cjth  11352
  Copyright terms: Public domain W3C validator