ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc GIF version

Theorem riotasbc 5605
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3106 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
2 riotacl2 5603 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sseldi 3021 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
4 df-sbc 2839 . 2 ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
53, 4sylibr 132 1 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438  {cab 2074  ∃!wreu 2361  {crab 2363  [wsbc 2838  crio 5589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-uni 3649  df-iota 4967  df-riota 5590
This theorem is referenced by:  riotass2  5616  riotass  5617  cjth  10245
  Copyright terms: Public domain W3C validator