| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riotasbc | GIF version | ||
| Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| riotasbc | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssab 3285 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
| 2 | riotacl2 5931 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3195 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) |
| 4 | df-sbc 3003 | . 2 ⊢ ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∣ 𝜑}) | |
| 5 | 3, 4 | sylibr 134 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {cab 2192 ∃!wreu 2487 {crab 2489 [wsbc 3002 ℩crio 5916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-uni 3860 df-iota 5246 df-riota 5917 |
| This theorem is referenced by: riotass2 5944 riotass 5945 cjth 11242 |
| Copyright terms: Public domain | W3C validator |