ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotasbc GIF version

Theorem riotasbc 5914
Description: Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 3280 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
2 riotacl2 5912 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3190 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
4 df-sbc 2998 . 2 ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
53, 4sylibr 134 1 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  {cab 2190  ∃!wreu 2485  {crab 2487  [wsbc 2997  crio 5897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-uni 3850  df-iota 5231  df-riota 5898
This theorem is referenced by:  riotass2  5925  riotass  5926  cjth  11099
  Copyright terms: Public domain W3C validator