ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjth Unicode version

Theorem cjth 11011
Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjth  |-  ( A  e.  CC  ->  (
( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )

Proof of Theorem cjth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cju 8988 . . . 4  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
2 riotasbc 5893 . . . 4  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  [. ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
31, 2syl 14 . . 3  |-  ( A  e.  CC  ->  [. ( iota_ x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
4 cjval 11010 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
54sbceq1d 2994 . . 3  |-  ( A  e.  CC  ->  ( [. ( * `  A
)  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <->  [. ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
63, 5mpbird 167 . 2  |-  ( A  e.  CC  ->  [. (
* `  A )  /  x ]. ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )
7 riotacl 5892 . . . . 5  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )  e.  CC )
81, 7syl 14 . . . 4  |-  ( A  e.  CC  ->  ( iota_ x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  e.  CC )
94, 8eqeltrd 2273 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
10 oveq2 5930 . . . . . 6  |-  ( x  =  ( * `  A )  ->  ( A  +  x )  =  ( A  +  ( * `  A
) ) )
1110eleq1d 2265 . . . . 5  |-  ( x  =  ( * `  A )  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  ( * `  A ) )  e.  RR ) )
12 oveq2 5930 . . . . . . 7  |-  ( x  =  ( * `  A )  ->  ( A  -  x )  =  ( A  -  ( * `  A
) ) )
1312oveq2d 5938 . . . . . 6  |-  ( x  =  ( * `  A )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  ( * `  A ) ) ) )
1413eleq1d 2265 . . . . 5  |-  ( x  =  ( * `  A )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  (
* `  A )
) )  e.  RR ) )
1511, 14anbi12d 473 . . . 4  |-  ( x  =  ( * `  A )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( * `  A
) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) ) )
1615sbcieg 3022 . . 3  |-  ( ( * `  A )  e.  CC  ->  ( [. ( * `  A
)  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( * `  A
) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) ) )
179, 16syl 14 . 2  |-  ( A  e.  CC  ->  ( [. ( * `  A
)  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( * `  A
) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) ) )
186, 17mpbid 147 1  |-  ( A  e.  CC  ->  (
( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E!wreu 2477   [.wsbc 2989   ` cfv 5258   iota_crio 5876  (class class class)co 5922   CCcc 7877   RRcr 7878   _ici 7881    + caddc 7882    x. cmul 7884    - cmin 8197   *ccj 11004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-sub 8199  df-neg 8200  df-reap 8602  df-cj 11007
This theorem is referenced by:  recl  11018  crre  11022
  Copyright terms: Public domain W3C validator