ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjth Unicode version

Theorem cjth 10650
Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjth  |-  ( A  e.  CC  ->  (
( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )

Proof of Theorem cjth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cju 8743 . . . 4  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
2 riotasbc 5753 . . . 4  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  [. ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
31, 2syl 14 . . 3  |-  ( A  e.  CC  ->  [. ( iota_ x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
4 cjval 10649 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
54sbceq1d 2918 . . 3  |-  ( A  e.  CC  ->  ( [. ( * `  A
)  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <->  [. ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
63, 5mpbird 166 . 2  |-  ( A  e.  CC  ->  [. (
* `  A )  /  x ]. ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )
7 riotacl 5752 . . . . 5  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )  e.  CC )
81, 7syl 14 . . . 4  |-  ( A  e.  CC  ->  ( iota_ x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  e.  CC )
94, 8eqeltrd 2217 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
10 oveq2 5790 . . . . . 6  |-  ( x  =  ( * `  A )  ->  ( A  +  x )  =  ( A  +  ( * `  A
) ) )
1110eleq1d 2209 . . . . 5  |-  ( x  =  ( * `  A )  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  ( * `  A ) )  e.  RR ) )
12 oveq2 5790 . . . . . . 7  |-  ( x  =  ( * `  A )  ->  ( A  -  x )  =  ( A  -  ( * `  A
) ) )
1312oveq2d 5798 . . . . . 6  |-  ( x  =  ( * `  A )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  ( * `  A ) ) ) )
1413eleq1d 2209 . . . . 5  |-  ( x  =  ( * `  A )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  (
* `  A )
) )  e.  RR ) )
1511, 14anbi12d 465 . . . 4  |-  ( x  =  ( * `  A )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( * `  A
) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) ) )
1615sbcieg 2945 . . 3  |-  ( ( * `  A )  e.  CC  ->  ( [. ( * `  A
)  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( * `  A
) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) ) )
179, 16syl 14 . 2  |-  ( A  e.  CC  ->  ( [. ( * `  A
)  /  x ]. ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( * `  A
) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) ) )
186, 17mpbid 146 1  |-  ( A  e.  CC  ->  (
( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   E!wreu 2419   [.wsbc 2913   ` cfv 5131   iota_crio 5737  (class class class)co 5782   CCcc 7642   RRcr 7643   _ici 7646    + caddc 7647    x. cmul 7649    - cmin 7957   *ccj 10643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-sub 7959  df-neg 7960  df-reap 8361  df-cj 10646
This theorem is referenced by:  recl  10657  crre  10661
  Copyright terms: Public domain W3C validator