ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnm Unicode version

Theorem rnsnm 4910
Description: The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
rnsnm  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
ran  { A } )
Distinct variable group:    x, A

Proof of Theorem rnsnm
StepHypRef Expression
1 dmsnm 4909 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
2 dmmrnm 4668 . 2  |-  ( E. x  x  e.  dom  { A }  <->  E. x  x  e.  ran  { A } )
31, 2bitri 183 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
ran  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1427    e. wcel 1439   _Vcvv 2620   {csn 3450    X. cxp 4450   dom cdm 4452   ran crn 4453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-cnv 4460  df-dm 4462  df-rn 4463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator