ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnm Unicode version

Theorem rnsnm 5070
Description: The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
rnsnm  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
ran  { A } )
Distinct variable group:    x, A

Proof of Theorem rnsnm
StepHypRef Expression
1 dmsnm 5069 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
2 dmmrnm 4823 . 2  |-  ( E. x  x  e.  dom  { A }  <->  E. x  x  e.  ran  { A } )
31, 2bitri 183 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
ran  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1480    e. wcel 2136   _Vcvv 2726   {csn 3576    X. cxp 4602   dom cdm 4604   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator