Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsnm | Unicode version |
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) |
Ref | Expression |
---|---|
dmsnm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4666 | . 2 | |
2 | vex 2729 | . . . . 5 | |
3 | 2 | eldm 4801 | . . . 4 |
4 | df-br 3983 | . . . . . 6 | |
5 | vex 2729 | . . . . . . . 8 | |
6 | 2, 5 | opex 4207 | . . . . . . 7 |
7 | 6 | elsn 3592 | . . . . . 6 |
8 | eqcom 2167 | . . . . . 6 | |
9 | 4, 7, 8 | 3bitri 205 | . . . . 5 |
10 | 9 | exbii 1593 | . . . 4 |
11 | 3, 10 | bitr2i 184 | . . 3 |
12 | 11 | exbii 1593 | . 2 |
13 | 1, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 csn 3576 cop 3579 class class class wbr 3982 cxp 4602 cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-dm 4614 |
This theorem is referenced by: rnsnm 5070 dmsn0 5071 dmsn0el 5073 relsn2m 5074 |
Copyright terms: Public domain | W3C validator |