ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnm Unicode version

Theorem dmsnm 5131
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmsnm  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
Distinct variable group:    x, A

Proof of Theorem dmsnm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elvv 4721 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2763 . . . . 5  |-  x  e. 
_V
32eldm 4859 . . . 4  |-  ( x  e.  dom  { A } 
<->  E. y  x { A } y )
4 df-br 4030 . . . . . 6  |-  ( x { A } y  <->  <. x ,  y >.  e.  { A } )
5 vex 2763 . . . . . . . 8  |-  y  e. 
_V
62, 5opex 4258 . . . . . . 7  |-  <. x ,  y >.  e.  _V
76elsn 3634 . . . . . 6  |-  ( <.
x ,  y >.  e.  { A }  <->  <. x ,  y >.  =  A
)
8 eqcom 2195 . . . . . 6  |-  ( <.
x ,  y >.  =  A  <->  A  =  <. x ,  y >. )
94, 7, 83bitri 206 . . . . 5  |-  ( x { A } y  <-> 
A  =  <. x ,  y >. )
109exbii 1616 . . . 4  |-  ( E. y  x { A } y  <->  E. y  A  =  <. x ,  y >. )
113, 10bitr2i 185 . . 3  |-  ( E. y  A  =  <. x ,  y >.  <->  x  e.  dom  { A } )
1211exbii 1616 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>. 
<->  E. x  x  e. 
dom  { A } )
131, 12bitri 184 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   {csn 3618   <.cop 3621   class class class wbr 4029    X. cxp 4657   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by:  rnsnm  5132  dmsn0  5133  dmsn0el  5135  relsn2m  5136
  Copyright terms: Public domain W3C validator