ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsnm Unicode version

Theorem dmsnm 5095
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmsnm  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
Distinct variable group:    x, A

Proof of Theorem dmsnm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elvv 4689 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2741 . . . . 5  |-  x  e. 
_V
32eldm 4825 . . . 4  |-  ( x  e.  dom  { A } 
<->  E. y  x { A } y )
4 df-br 4005 . . . . . 6  |-  ( x { A } y  <->  <. x ,  y >.  e.  { A } )
5 vex 2741 . . . . . . . 8  |-  y  e. 
_V
62, 5opex 4230 . . . . . . 7  |-  <. x ,  y >.  e.  _V
76elsn 3609 . . . . . 6  |-  ( <.
x ,  y >.  e.  { A }  <->  <. x ,  y >.  =  A
)
8 eqcom 2179 . . . . . 6  |-  ( <.
x ,  y >.  =  A  <->  A  =  <. x ,  y >. )
94, 7, 83bitri 206 . . . . 5  |-  ( x { A } y  <-> 
A  =  <. x ,  y >. )
109exbii 1605 . . . 4  |-  ( E. y  x { A } y  <->  E. y  A  =  <. x ,  y >. )
113, 10bitr2i 185 . . 3  |-  ( E. y  A  =  <. x ,  y >.  <->  x  e.  dom  { A } )
1211exbii 1605 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>. 
<->  E. x  x  e. 
dom  { A } )
131, 12bitri 184 1  |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
dom  { A } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2738   {csn 3593   <.cop 3596   class class class wbr 4004    X. cxp 4625   dom cdm 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-dm 4637
This theorem is referenced by:  rnsnm  5096  dmsn0  5097  dmsn0el  5099  relsn2m  5100
  Copyright terms: Public domain W3C validator