Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmsnm | Unicode version |
Description: The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.) |
Ref | Expression |
---|---|
dmsnm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4671 | . 2 | |
2 | vex 2733 | . . . . 5 | |
3 | 2 | eldm 4806 | . . . 4 |
4 | df-br 3988 | . . . . . 6 | |
5 | vex 2733 | . . . . . . . 8 | |
6 | 2, 5 | opex 4212 | . . . . . . 7 |
7 | 6 | elsn 3597 | . . . . . 6 |
8 | eqcom 2172 | . . . . . 6 | |
9 | 4, 7, 8 | 3bitri 205 | . . . . 5 |
10 | 9 | exbii 1598 | . . . 4 |
11 | 3, 10 | bitr2i 184 | . . 3 |
12 | 11 | exbii 1598 | . 2 |
13 | 1, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 csn 3581 cop 3584 class class class wbr 3987 cxp 4607 cdm 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-dm 4619 |
This theorem is referenced by: rnsnm 5075 dmsn0 5076 dmsn0el 5078 relsn2m 5079 |
Copyright terms: Public domain | W3C validator |