ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmrnm Unicode version

Theorem dmmrnm 4758
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmmrnm  |-  ( E. x  x  e.  dom  A  <->  E. y  y  e.  ran  A )
Distinct variable groups:    y, A    x, A

Proof of Theorem dmmrnm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-dm 4549 . . . . 5  |-  dom  A  =  { x  |  E. z  x A z }
21eleq2i 2206 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  { x  |  E. z  x A z } )
32exbii 1584 . . 3  |-  ( E. x  x  e.  dom  A  <->  E. x  x  e.  { x  |  E. z  x A z } )
4 abid 2127 . . . 4  |-  ( x  e.  { x  |  E. z  x A z }  <->  E. z  x A z )
54exbii 1584 . . 3  |-  ( E. x  x  e.  {
x  |  E. z  x A z }  <->  E. x E. z  x A
z )
63, 5bitri 183 . 2  |-  ( E. x  x  e.  dom  A  <->  E. x E. z  x A z )
7 dfrn2 4727 . . . . 5  |-  ran  A  =  { z  |  E. x  x A z }
87eleq2i 2206 . . . 4  |-  ( z  e.  ran  A  <->  z  e.  { z  |  E. x  x A z } )
98exbii 1584 . . 3  |-  ( E. z  z  e.  ran  A  <->  E. z  z  e.  { z  |  E. x  x A z } )
10 abid 2127 . . . . 5  |-  ( z  e.  { z  |  E. x  x A z }  <->  E. x  x A z )
1110exbii 1584 . . . 4  |-  ( E. z  z  e.  {
z  |  E. x  x A z }  <->  E. z E. x  x A
z )
12 excom 1642 . . . 4  |-  ( E. z E. x  x A z  <->  E. x E. z  x A
z )
1311, 12bitri 183 . . 3  |-  ( E. z  z  e.  {
z  |  E. x  x A z }  <->  E. x E. z  x A
z )
149, 13bitri 183 . 2  |-  ( E. z  z  e.  ran  A  <->  E. x E. z  x A z )
15 eleq1 2202 . . 3  |-  ( z  =  y  ->  (
z  e.  ran  A  <->  y  e.  ran  A ) )
1615cbvexv 1890 . 2  |-  ( E. z  z  e.  ran  A  <->  E. y  y  e.  ran  A )
176, 14, 163bitr2i 207 1  |-  ( E. x  x  e.  dom  A  <->  E. y  y  e.  ran  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1468    e. wcel 1480   {cab 2125   class class class wbr 3929   dom cdm 4539   ran crn 4540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-cnv 4547  df-dm 4549  df-rn 4550
This theorem is referenced by:  rnsnm  5005  nninfall  13204
  Copyright terms: Public domain W3C validator