ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmrnm Unicode version

Theorem dmmrnm 4943
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmmrnm  |-  ( E. x  x  e.  dom  A  <->  E. y  y  e.  ran  A )
Distinct variable groups:    y, A    x, A

Proof of Theorem dmmrnm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-dm 4729 . . . . 5  |-  dom  A  =  { x  |  E. z  x A z }
21eleq2i 2296 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  { x  |  E. z  x A z } )
32exbii 1651 . . 3  |-  ( E. x  x  e.  dom  A  <->  E. x  x  e.  { x  |  E. z  x A z } )
4 abid 2217 . . . 4  |-  ( x  e.  { x  |  E. z  x A z }  <->  E. z  x A z )
54exbii 1651 . . 3  |-  ( E. x  x  e.  {
x  |  E. z  x A z }  <->  E. x E. z  x A
z )
63, 5bitri 184 . 2  |-  ( E. x  x  e.  dom  A  <->  E. x E. z  x A z )
7 dfrn2 4910 . . . . 5  |-  ran  A  =  { z  |  E. x  x A z }
87eleq2i 2296 . . . 4  |-  ( z  e.  ran  A  <->  z  e.  { z  |  E. x  x A z } )
98exbii 1651 . . 3  |-  ( E. z  z  e.  ran  A  <->  E. z  z  e.  { z  |  E. x  x A z } )
10 abid 2217 . . . . 5  |-  ( z  e.  { z  |  E. x  x A z }  <->  E. x  x A z )
1110exbii 1651 . . . 4  |-  ( E. z  z  e.  {
z  |  E. x  x A z }  <->  E. z E. x  x A
z )
12 excom 1710 . . . 4  |-  ( E. z E. x  x A z  <->  E. x E. z  x A
z )
1311, 12bitri 184 . . 3  |-  ( E. z  z  e.  {
z  |  E. x  x A z }  <->  E. x E. z  x A
z )
149, 13bitri 184 . 2  |-  ( E. z  z  e.  ran  A  <->  E. x E. z  x A z )
15 eleq1 2292 . . 3  |-  ( z  =  y  ->  (
z  e.  ran  A  <->  y  e.  ran  A ) )
1615cbvexv 1965 . 2  |-  ( E. z  z  e.  ran  A  <->  E. y  y  e.  ran  A )
176, 14, 163bitr2i 208 1  |-  ( E. x  x  e.  dom  A  <->  E. y  y  e.  ran  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1538    e. wcel 2200   {cab 2215   class class class wbr 4083   dom cdm 4719   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  rnsnm  5195  ghmrn  13794  nninfall  16375
  Copyright terms: Public domain W3C validator