ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmrnm Unicode version

Theorem dmmrnm 4817
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmmrnm  |-  ( E. x  x  e.  dom  A  <->  E. y  y  e.  ran  A )
Distinct variable groups:    y, A    x, A

Proof of Theorem dmmrnm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-dm 4608 . . . . 5  |-  dom  A  =  { x  |  E. z  x A z }
21eleq2i 2231 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  { x  |  E. z  x A z } )
32exbii 1592 . . 3  |-  ( E. x  x  e.  dom  A  <->  E. x  x  e.  { x  |  E. z  x A z } )
4 abid 2152 . . . 4  |-  ( x  e.  { x  |  E. z  x A z }  <->  E. z  x A z )
54exbii 1592 . . 3  |-  ( E. x  x  e.  {
x  |  E. z  x A z }  <->  E. x E. z  x A
z )
63, 5bitri 183 . 2  |-  ( E. x  x  e.  dom  A  <->  E. x E. z  x A z )
7 dfrn2 4786 . . . . 5  |-  ran  A  =  { z  |  E. x  x A z }
87eleq2i 2231 . . . 4  |-  ( z  e.  ran  A  <->  z  e.  { z  |  E. x  x A z } )
98exbii 1592 . . 3  |-  ( E. z  z  e.  ran  A  <->  E. z  z  e.  { z  |  E. x  x A z } )
10 abid 2152 . . . . 5  |-  ( z  e.  { z  |  E. x  x A z }  <->  E. x  x A z )
1110exbii 1592 . . . 4  |-  ( E. z  z  e.  {
z  |  E. x  x A z }  <->  E. z E. x  x A
z )
12 excom 1651 . . . 4  |-  ( E. z E. x  x A z  <->  E. x E. z  x A
z )
1311, 12bitri 183 . . 3  |-  ( E. z  z  e.  {
z  |  E. x  x A z }  <->  E. x E. z  x A
z )
149, 13bitri 183 . 2  |-  ( E. z  z  e.  ran  A  <->  E. x E. z  x A z )
15 eleq1 2227 . . 3  |-  ( z  =  y  ->  (
z  e.  ran  A  <->  y  e.  ran  A ) )
1615cbvexv 1905 . 2  |-  ( E. z  z  e.  ran  A  <->  E. y  y  e.  ran  A )
176, 14, 163bitr2i 207 1  |-  ( E. x  x  e.  dom  A  <->  E. y  y  e.  ran  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1479    e. wcel 2135   {cab 2150   class class class wbr 3976   dom cdm 4598   ran crn 4599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-opab 4038  df-cnv 4606  df-dm 4608  df-rn 4609
This theorem is referenced by:  rnsnm  5064  nninfall  13723
  Copyright terms: Public domain W3C validator