ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnm GIF version

Theorem rnsnm 5133
Description: The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
rnsnm (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnsnm
StepHypRef Expression
1 dmsnm 5132 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
2 dmmrnm 4882 . 2 (∃𝑥 𝑥 ∈ dom {𝐴} ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
31, 2bitri 184 1 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1503  wcel 2164  Vcvv 2760  {csn 3619   × cxp 4658  dom cdm 4660  ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator