ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnm GIF version

Theorem rnsnm 5195
Description: The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
rnsnm (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnsnm
StepHypRef Expression
1 dmsnm 5194 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
2 dmmrnm 4943 . 2 (∃𝑥 𝑥 ∈ dom {𝐴} ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
31, 2bitri 184 1 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1538  wcel 2200  Vcvv 2799  {csn 3666   × cxp 4717  dom cdm 4719  ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator