ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnm GIF version

Theorem rnsnm 5070
Description: The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
rnsnm (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem rnsnm
StepHypRef Expression
1 dmsnm 5069 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
2 dmmrnm 4823 . 2 (∃𝑥 𝑥 ∈ dom {𝐴} ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
31, 2bitri 183 1 (𝐴 ∈ (V × V) ↔ ∃𝑥 𝑥 ∈ ran {𝐴})
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1480  wcel 2136  Vcvv 2726  {csn 3576   × cxp 4602  dom cdm 4604  ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator