| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 |
|
| sylibrd.2 |
|
| Ref | Expression |
|---|---|
| sylibrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 |
. 2
| |
| 2 | sylibrd.2 |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3059 opeldmg 4927 elreldm 4949 ssimaex 5694 resflem 5798 f1eqcocnv 5914 fliftfun 5919 isopolem 5945 isosolem 5947 brtposg 6398 issmo2 6433 nnmcl 6625 nnawordi 6659 nnmordi 6660 nnmord 6661 swoord1 6707 ecopovtrn 6777 ecopovtrng 6780 f1domg 6907 mapen 7003 mapxpen 7005 supmoti 7156 isotilem 7169 exmidomniim 7304 enq0tr 7617 prubl 7669 ltexprlemloc 7790 addextpr 7804 recexprlem1ssl 7816 recexprlem1ssu 7817 cauappcvgprlemdisj 7834 mulcmpblnr 7924 mulgt0sr 7961 map2psrprg 7988 ltleletr 8224 ltle 8230 ltadd2 8562 leltadd 8590 reapti 8722 apreap 8730 reapcotr 8741 apcotr 8750 addext 8753 mulext1 8755 zapne 9517 zextle 9534 prime 9542 uzin 9751 indstr 9784 supinfneg 9786 infsupneg 9787 ublbneg 9804 xrltle 9990 xrre2 10013 icc0r 10118 fzrevral 10297 flqge 10497 modqadd1 10578 modqmul1 10594 facdiv 10955 elfzelfzccat 11130 resqrexlemgt0 11526 abs00ap 11568 absext 11569 climshftlemg 11808 climcaucn 11857 dvds2lem 12309 dvdsfac 12366 ltoddhalfle 12399 ndvdsadd 12437 bitsinv1lem 12467 gcdaddm 12500 bezoutlembi 12521 gcdzeq 12538 algcvga 12568 rpdvds 12616 cncongr1 12620 cncongr2 12621 prmind2 12637 euclemma 12663 isprm6 12664 rpexp 12670 sqrt2irr 12679 odzdvds 12763 pclemub 12805 pceulem 12812 pc2dvds 12848 fldivp1 12866 infpnlem1 12877 prmunb 12880 issubg4m 13725 imasabl 13868 fiinbas 14717 bastg 14729 tgcl 14732 opnssneib 14824 tgcnp 14877 iscnp4 14886 cnntr 14893 cnptopresti 14906 lmss 14914 lmtopcnp 14918 txdis 14945 xblss2ps 15072 xblss2 15073 blsscls2 15161 metequiv2 15164 bdxmet 15169 mulc1cncf 15257 cncfco 15259 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 lgsdir 15708 lgsquadlem2 15751 2sqlem8a 15795 2sqlem10 15798 uspgrushgr 15972 uspgrupgr 15973 usgruspgr 15975 triap 16356 |
| Copyright terms: Public domain | W3C validator |