![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylibrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylibrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibrd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylibrd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimprd 158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syld 45 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr4d 203 sbciegft 3016 opeldmg 4867 elreldm 4888 ssimaex 5618 resflem 5722 f1eqcocnv 5834 fliftfun 5839 isopolem 5865 isosolem 5867 brtposg 6307 issmo2 6342 nnmcl 6534 nnawordi 6568 nnmordi 6569 nnmord 6570 swoord1 6616 ecopovtrn 6686 ecopovtrng 6689 f1domg 6812 mapen 6902 mapxpen 6904 supmoti 7052 isotilem 7065 exmidomniim 7200 enq0tr 7494 prubl 7546 ltexprlemloc 7667 addextpr 7681 recexprlem1ssl 7693 recexprlem1ssu 7694 cauappcvgprlemdisj 7711 mulcmpblnr 7801 mulgt0sr 7838 map2psrprg 7865 ltleletr 8101 ltle 8107 ltadd2 8438 leltadd 8466 reapti 8598 apreap 8606 reapcotr 8617 apcotr 8626 addext 8629 mulext1 8631 zapne 9391 zextle 9408 prime 9416 uzin 9625 indstr 9658 supinfneg 9660 infsupneg 9661 ublbneg 9678 xrltle 9864 xrre2 9887 icc0r 9992 fzrevral 10171 flqge 10351 modqadd1 10432 modqmul1 10448 facdiv 10809 resqrexlemgt0 11164 abs00ap 11206 absext 11207 climshftlemg 11445 climcaucn 11494 dvds2lem 11946 dvdsfac 12002 ltoddhalfle 12034 ndvdsadd 12072 gcdaddm 12121 bezoutlembi 12142 gcdzeq 12159 algcvga 12189 rpdvds 12237 cncongr1 12241 cncongr2 12242 prmind2 12258 euclemma 12284 isprm6 12285 rpexp 12291 sqrt2irr 12300 odzdvds 12383 pclemub 12425 pceulem 12432 pc2dvds 12468 fldivp1 12486 infpnlem1 12497 prmunb 12500 issubg4m 13263 imasabl 13406 fiinbas 14217 bastg 14229 tgcl 14232 opnssneib 14324 tgcnp 14377 iscnp4 14386 cnntr 14393 cnptopresti 14406 lmss 14414 lmtopcnp 14418 txdis 14445 xblss2ps 14572 xblss2 14573 blsscls2 14661 metequiv2 14664 bdxmet 14669 mulc1cncf 14744 cncfco 14746 sincosq2sgn 14962 sincosq3sgn 14963 sincosq4sgn 14964 lgsdir 15151 2sqlem8a 15209 2sqlem10 15212 triap 15519 |
Copyright terms: Public domain | W3C validator |