Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibrd.1 | |
sylibrd.2 |
Ref | Expression |
---|---|
sylibrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibrd.1 | . 2 | |
2 | sylibrd.2 | . . 3 | |
3 | 2 | biimprd 157 | . 2 |
4 | 1, 3 | syld 45 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr4d 202 sbciegft 2967 opeldmg 4788 elreldm 4809 ssimaex 5526 resflem 5628 f1eqcocnv 5736 fliftfun 5741 isopolem 5767 isosolem 5769 brtposg 6195 issmo2 6230 nnmcl 6421 nnawordi 6455 nnmordi 6456 nnmord 6457 swoord1 6502 ecopovtrn 6570 ecopovtrng 6573 f1domg 6696 mapen 6784 mapxpen 6786 supmoti 6929 isotilem 6942 exmidomniim 7067 enq0tr 7337 prubl 7389 ltexprlemloc 7510 addextpr 7524 recexprlem1ssl 7536 recexprlem1ssu 7537 cauappcvgprlemdisj 7554 mulcmpblnr 7644 mulgt0sr 7681 map2psrprg 7708 ltleletr 7942 ltle 7947 ltadd2 8277 leltadd 8305 reapti 8437 apreap 8445 reapcotr 8456 apcotr 8465 addext 8468 mulext1 8470 zapne 9221 zextle 9238 prime 9246 uzin 9454 indstr 9487 supinfneg 9489 infsupneg 9490 ublbneg 9504 xrltle 9687 xrre2 9707 icc0r 9812 fzrevral 9989 flqge 10163 modqadd1 10242 modqmul1 10258 facdiv 10594 resqrexlemgt0 10902 abs00ap 10944 absext 10945 climshftlemg 11181 climcaucn 11230 dvds2lem 11680 dvdsfac 11733 ltoddhalfle 11765 ndvdsadd 11803 gcdaddm 11848 bezoutlembi 11869 gcdzeq 11886 algcvga 11908 rpdvds 11956 cncongr1 11960 cncongr2 11961 prmind2 11977 euclemma 12000 isprm6 12001 rpexp 12007 sqrt2irr 12016 fiinbas 12407 bastg 12421 tgcl 12424 opnssneib 12516 tgcnp 12569 iscnp4 12578 cnntr 12585 cnptopresti 12598 lmss 12606 lmtopcnp 12610 txdis 12637 xblss2ps 12764 xblss2 12765 blsscls2 12853 metequiv2 12856 bdxmet 12861 mulc1cncf 12936 cncfco 12938 sincosq2sgn 13108 sincosq3sgn 13109 sincosq4sgn 13110 triap 13562 |
Copyright terms: Public domain | W3C validator |