| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 |
|
| sylibrd.2 |
|
| Ref | Expression |
|---|---|
| sylibrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 |
. 2
| |
| 2 | sylibrd.2 |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3020 opeldmg 4872 elreldm 4893 ssimaex 5623 resflem 5727 f1eqcocnv 5839 fliftfun 5844 isopolem 5870 isosolem 5872 brtposg 6313 issmo2 6348 nnmcl 6540 nnawordi 6574 nnmordi 6575 nnmord 6576 swoord1 6622 ecopovtrn 6692 ecopovtrng 6695 f1domg 6818 mapen 6908 mapxpen 6910 supmoti 7060 isotilem 7073 exmidomniim 7208 enq0tr 7503 prubl 7555 ltexprlemloc 7676 addextpr 7690 recexprlem1ssl 7702 recexprlem1ssu 7703 cauappcvgprlemdisj 7720 mulcmpblnr 7810 mulgt0sr 7847 map2psrprg 7874 ltleletr 8110 ltle 8116 ltadd2 8448 leltadd 8476 reapti 8608 apreap 8616 reapcotr 8627 apcotr 8636 addext 8639 mulext1 8641 zapne 9402 zextle 9419 prime 9427 uzin 9636 indstr 9669 supinfneg 9671 infsupneg 9672 ublbneg 9689 xrltle 9875 xrre2 9898 icc0r 10003 fzrevral 10182 flqge 10374 modqadd1 10455 modqmul1 10471 facdiv 10832 resqrexlemgt0 11187 abs00ap 11229 absext 11230 climshftlemg 11469 climcaucn 11518 dvds2lem 11970 dvdsfac 12027 ltoddhalfle 12060 ndvdsadd 12098 bitsinv1lem 12128 gcdaddm 12161 bezoutlembi 12182 gcdzeq 12199 algcvga 12229 rpdvds 12277 cncongr1 12281 cncongr2 12282 prmind2 12298 euclemma 12324 isprm6 12325 rpexp 12331 sqrt2irr 12340 odzdvds 12424 pclemub 12466 pceulem 12473 pc2dvds 12509 fldivp1 12527 infpnlem1 12538 prmunb 12541 issubg4m 13333 imasabl 13476 fiinbas 14295 bastg 14307 tgcl 14310 opnssneib 14402 tgcnp 14455 iscnp4 14464 cnntr 14471 cnptopresti 14484 lmss 14492 lmtopcnp 14496 txdis 14523 xblss2ps 14650 xblss2 14651 blsscls2 14739 metequiv2 14742 bdxmet 14747 mulc1cncf 14835 cncfco 14837 sincosq2sgn 15073 sincosq3sgn 15074 sincosq4sgn 15075 lgsdir 15286 lgsquadlem2 15329 2sqlem8a 15373 2sqlem10 15376 triap 15683 |
| Copyright terms: Public domain | W3C validator |