| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 |
|
| sylibrd.2 |
|
| Ref | Expression |
|---|---|
| sylibrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 |
. 2
| |
| 2 | sylibrd.2 |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3020 opeldmg 4872 elreldm 4893 ssimaex 5625 resflem 5729 f1eqcocnv 5841 fliftfun 5846 isopolem 5872 isosolem 5874 brtposg 6321 issmo2 6356 nnmcl 6548 nnawordi 6582 nnmordi 6583 nnmord 6584 swoord1 6630 ecopovtrn 6700 ecopovtrng 6703 f1domg 6826 mapen 6916 mapxpen 6918 supmoti 7068 isotilem 7081 exmidomniim 7216 enq0tr 7520 prubl 7572 ltexprlemloc 7693 addextpr 7707 recexprlem1ssl 7719 recexprlem1ssu 7720 cauappcvgprlemdisj 7737 mulcmpblnr 7827 mulgt0sr 7864 map2psrprg 7891 ltleletr 8127 ltle 8133 ltadd2 8465 leltadd 8493 reapti 8625 apreap 8633 reapcotr 8644 apcotr 8653 addext 8656 mulext1 8658 zapne 9419 zextle 9436 prime 9444 uzin 9653 indstr 9686 supinfneg 9688 infsupneg 9689 ublbneg 9706 xrltle 9892 xrre2 9915 icc0r 10020 fzrevral 10199 flqge 10391 modqadd1 10472 modqmul1 10488 facdiv 10849 resqrexlemgt0 11204 abs00ap 11246 absext 11247 climshftlemg 11486 climcaucn 11535 dvds2lem 11987 dvdsfac 12044 ltoddhalfle 12077 ndvdsadd 12115 bitsinv1lem 12145 gcdaddm 12178 bezoutlembi 12199 gcdzeq 12216 algcvga 12246 rpdvds 12294 cncongr1 12298 cncongr2 12299 prmind2 12315 euclemma 12341 isprm6 12342 rpexp 12348 sqrt2irr 12357 odzdvds 12441 pclemub 12483 pceulem 12490 pc2dvds 12526 fldivp1 12544 infpnlem1 12555 prmunb 12558 issubg4m 13401 imasabl 13544 fiinbas 14393 bastg 14405 tgcl 14408 opnssneib 14500 tgcnp 14553 iscnp4 14562 cnntr 14569 cnptopresti 14582 lmss 14590 lmtopcnp 14594 txdis 14621 xblss2ps 14748 xblss2 14749 blsscls2 14837 metequiv2 14840 bdxmet 14845 mulc1cncf 14933 cncfco 14935 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 lgsdir 15384 lgsquadlem2 15427 2sqlem8a 15471 2sqlem10 15474 triap 15786 |
| Copyright terms: Public domain | W3C validator |