| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 |
|
| sylibrd.2 |
|
| Ref | Expression |
|---|---|
| sylibrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 |
. 2
| |
| 2 | sylibrd.2 |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3028 opeldmg 4882 elreldm 4903 ssimaex 5639 resflem 5743 f1eqcocnv 5859 fliftfun 5864 isopolem 5890 isosolem 5892 brtposg 6339 issmo2 6374 nnmcl 6566 nnawordi 6600 nnmordi 6601 nnmord 6602 swoord1 6648 ecopovtrn 6718 ecopovtrng 6721 f1domg 6848 mapen 6942 mapxpen 6944 supmoti 7094 isotilem 7107 exmidomniim 7242 enq0tr 7546 prubl 7598 ltexprlemloc 7719 addextpr 7733 recexprlem1ssl 7745 recexprlem1ssu 7746 cauappcvgprlemdisj 7763 mulcmpblnr 7853 mulgt0sr 7890 map2psrprg 7917 ltleletr 8153 ltle 8159 ltadd2 8491 leltadd 8519 reapti 8651 apreap 8659 reapcotr 8670 apcotr 8679 addext 8682 mulext1 8684 zapne 9446 zextle 9463 prime 9471 uzin 9680 indstr 9713 supinfneg 9715 infsupneg 9716 ublbneg 9733 xrltle 9919 xrre2 9942 icc0r 10047 fzrevral 10226 flqge 10423 modqadd1 10504 modqmul1 10520 facdiv 10881 elfzelfzccat 11054 resqrexlemgt0 11273 abs00ap 11315 absext 11316 climshftlemg 11555 climcaucn 11604 dvds2lem 12056 dvdsfac 12113 ltoddhalfle 12146 ndvdsadd 12184 bitsinv1lem 12214 gcdaddm 12247 bezoutlembi 12268 gcdzeq 12285 algcvga 12315 rpdvds 12363 cncongr1 12367 cncongr2 12368 prmind2 12384 euclemma 12410 isprm6 12411 rpexp 12417 sqrt2irr 12426 odzdvds 12510 pclemub 12552 pceulem 12559 pc2dvds 12595 fldivp1 12613 infpnlem1 12624 prmunb 12627 issubg4m 13471 imasabl 13614 fiinbas 14463 bastg 14475 tgcl 14478 opnssneib 14570 tgcnp 14623 iscnp4 14632 cnntr 14639 cnptopresti 14652 lmss 14660 lmtopcnp 14664 txdis 14691 xblss2ps 14818 xblss2 14819 blsscls2 14907 metequiv2 14910 bdxmet 14915 mulc1cncf 15003 cncfco 15005 sincosq2sgn 15241 sincosq3sgn 15242 sincosq4sgn 15243 lgsdir 15454 lgsquadlem2 15497 2sqlem8a 15541 2sqlem10 15544 triap 15901 |
| Copyright terms: Public domain | W3C validator |