| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibrd | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibrd.1 |
|
| sylibrd.2 |
|
| Ref | Expression |
|---|---|
| sylibrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibrd.1 |
. 2
| |
| 2 | sylibrd.2 |
. . 3
| |
| 3 | 2 | biimprd 158 |
. 2
|
| 4 | 1, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr4d 203 sbciegft 3033 opeldmg 4892 elreldm 4913 ssimaex 5653 resflem 5757 f1eqcocnv 5873 fliftfun 5878 isopolem 5904 isosolem 5906 brtposg 6353 issmo2 6388 nnmcl 6580 nnawordi 6614 nnmordi 6615 nnmord 6616 swoord1 6662 ecopovtrn 6732 ecopovtrng 6735 f1domg 6862 mapen 6958 mapxpen 6960 supmoti 7110 isotilem 7123 exmidomniim 7258 enq0tr 7567 prubl 7619 ltexprlemloc 7740 addextpr 7754 recexprlem1ssl 7766 recexprlem1ssu 7767 cauappcvgprlemdisj 7784 mulcmpblnr 7874 mulgt0sr 7911 map2psrprg 7938 ltleletr 8174 ltle 8180 ltadd2 8512 leltadd 8540 reapti 8672 apreap 8680 reapcotr 8691 apcotr 8700 addext 8703 mulext1 8705 zapne 9467 zextle 9484 prime 9492 uzin 9701 indstr 9734 supinfneg 9736 infsupneg 9737 ublbneg 9754 xrltle 9940 xrre2 9963 icc0r 10068 fzrevral 10247 flqge 10447 modqadd1 10528 modqmul1 10544 facdiv 10905 elfzelfzccat 11079 resqrexlemgt0 11406 abs00ap 11448 absext 11449 climshftlemg 11688 climcaucn 11737 dvds2lem 12189 dvdsfac 12246 ltoddhalfle 12279 ndvdsadd 12317 bitsinv1lem 12347 gcdaddm 12380 bezoutlembi 12401 gcdzeq 12418 algcvga 12448 rpdvds 12496 cncongr1 12500 cncongr2 12501 prmind2 12517 euclemma 12543 isprm6 12544 rpexp 12550 sqrt2irr 12559 odzdvds 12643 pclemub 12685 pceulem 12692 pc2dvds 12728 fldivp1 12746 infpnlem1 12757 prmunb 12760 issubg4m 13604 imasabl 13747 fiinbas 14596 bastg 14608 tgcl 14611 opnssneib 14703 tgcnp 14756 iscnp4 14765 cnntr 14772 cnptopresti 14785 lmss 14793 lmtopcnp 14797 txdis 14824 xblss2ps 14951 xblss2 14952 blsscls2 15040 metequiv2 15043 bdxmet 15048 mulc1cncf 15136 cncfco 15138 sincosq2sgn 15374 sincosq3sgn 15375 sincosq4sgn 15376 lgsdir 15587 lgsquadlem2 15630 2sqlem8a 15674 2sqlem10 15677 triap 16109 |
| Copyright terms: Public domain | W3C validator |