ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcssg GIF version

Theorem sbcssg 3534
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcssg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcssg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcalg 3017 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶)))
2 sbcimg 3006 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶)))
3 sbcel2g 3080 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
4 sbcel2g 3080 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
53, 4imbi12d 234 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
62, 5bitrd 188 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
76albidv 1824 . . 3 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
81, 7bitrd 188 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
9 dfss2 3146 . . 3 (𝐵𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
109sbcbii 3024 . 2 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶))
11 dfss2 3146 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
128, 10, 113bitr4g 223 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wcel 2148  [wsbc 2964  csb 3059  wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060  df-in 3137  df-ss 3144
This theorem is referenced by:  sbcrel  4714  sbcfg  5366
  Copyright terms: Public domain W3C validator