ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcssg GIF version

Theorem sbcssg 3580
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcssg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcssg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcalg 3061 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶)))
2 sbcimg 3050 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶)))
3 sbcel2g 3125 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
4 sbcel2g 3125 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
53, 4imbi12d 234 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
62, 5bitrd 188 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
76albidv 1850 . . 3 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
81, 7bitrd 188 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
9 ssalel 3192 . . 3 (𝐵𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
109sbcbii 3068 . 2 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶))
11 ssalel 3192 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
128, 10, 113bitr4g 223 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373  wcel 2180  [wsbc 3008  csb 3104  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-sbc 3009  df-csb 3105  df-in 3183  df-ss 3190
This theorem is referenced by:  sbcrel  4782  sbcfg  5448
  Copyright terms: Public domain W3C validator