ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass Unicode version

Theorem mulgass 12875
Description: Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgass  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1001 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
2 elznn0 9236 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
32simprbi 275 . . 3  |-  ( M  e.  ZZ  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
41, 3syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
5 simpr2 1002 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
6 elznn0 9236 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
76simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
85, 7syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
9 grpmnd 12742 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Mnd )
109ad2antrr 488 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
11 simprl 529 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  M  e.  NN0 )
12 simprr 530 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
13 simplr3 1039 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
14 mulgass.b . . . . . 6  |-  B  =  ( Base `  G
)
15 mulgass.t . . . . . 6  |-  .x.  =  (.g
`  G )
1614, 15mulgnn0ass 12874 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
1710, 11, 12, 13, 16syl13anc 1238 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
1817ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
191zcnd 9344 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
205zcnd 9344 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
2119, 20mulneg1d 8339 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
2221adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u M  x.  N
)  =  -u ( M  x.  N )
)
2322oveq1d 5877 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
249ad2antrr 488 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
25 simprl 529 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  -u M  e.  NN0 )
26 simprr 530 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
27 simpr3 1003 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  X  e.  B )
2827adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
2914, 15mulgnn0ass 12874 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( -u M  x.  N ) 
.x.  X )  =  ( -u M  .x.  ( N  .x.  X ) ) )
3024, 25, 26, 28, 29syl13anc 1238 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
3123, 30eqtr3d 2208 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
32 fveq2 5504 . . . . . . 7  |-  ( (
-u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) )  -> 
( ( invg `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) ) )
33 simpl 109 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  G  e.  Grp )
341, 5zmulcld 9349 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  N )  e.  ZZ )
35 eqid 2173 . . . . . . . . . . . 12  |-  ( invg `  G )  =  ( invg `  G )
3614, 15, 35mulgneg 12857 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3733, 34, 27, 36syl3anc 1236 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3837fveq2d 5508 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) ) )
3914, 15mulgcl 12856 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  x.  N )  .x.  X
)  e.  B )
4033, 34, 27, 39syl3anc 1236 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  e.  B
)
4114, 35grpinvinv 12793 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( M  x.  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4240, 41syldan 282 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4338, 42eqtrd 2206 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( M  x.  N )  .x.  X
) )
4414, 15mulgcl 12856 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4533, 5, 27, 44syl3anc 1236 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
4614, 15, 35mulgneg 12857 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( ( invg `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )
4733, 1, 45, 46syl3anc 1236 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( ( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )
4847fveq2d 5508 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) ) )
4914, 15mulgcl 12856 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( M  .x.  ( N  .x.  X ) )  e.  B )
5033, 1, 45, 49syl3anc 1236 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( N  .x.  X
) )  e.  B
)
5114, 35grpinvinv 12793 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  .x.  ( N 
.x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
5250, 51syldan 282 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5348, 52eqtrd 2206 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5443, 53eqeq12d 2188 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( invg `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
5532, 54syl5ib 155 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u ( M  x.  N
)  .x.  X )  =  ( -u M  .x.  ( N  .x.  X
) )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
5655imp 124 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u ( M  x.  N )  .x.  X )  =  (
-u M  .x.  ( N  .x.  X ) ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
5731, 56syldan 282 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
5857ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
599ad2antrr 488 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
60 simprl 529 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  NN0 )
61 simprr 530 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
6227adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
6314, 15mulgnn0ass 12874 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  -u N ) 
.x.  X )  =  ( M  .x.  ( -u N  .x.  X ) ) )
6459, 60, 61, 62, 63syl13anc 1238 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( M 
.x.  ( -u N  .x.  X ) ) )
6519, 20mulneg2d 8340 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  -u N )  = 
-u ( M  x.  N ) )
6665adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  x.  -u N
)  =  -u ( M  x.  N )
)
6766oveq1d 5877 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
6814, 15, 35mulgneg 12857 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
6933, 5, 27, 68syl3anc 1236 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `  ( N  .x.  X ) ) )
7069oveq2d 5878 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( M  .x.  (
( invg `  G ) `  ( N  .x.  X ) ) ) )
7114, 15, 35mulgneg2 12872 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( M  .x.  ( ( invg `  G ) `  ( N  .x.  X ) ) ) )
7233, 1, 45, 71syl3anc 1236 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( M  .x.  ( ( invg `  G
) `  ( N  .x.  X ) ) ) )
7370, 72eqtr4d 2209 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7473adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7564, 67, 743eqtr3d 2214 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
7675, 56syldan 282 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
7776ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
789ad2antrr 488 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
79 simprl 529 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u M  e.  NN0 )
80 simprr 530 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
8127adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
8214, 15mulgnn0ass 12874 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( -u M  .x.  ( -u N  .x.  X ) ) )
8378, 79, 80, 81, 82syl13anc 1238 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  (
-u M  .x.  ( -u N  .x.  X ) ) )
8419, 20mul2negd 8341 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  -u N )  =  ( M  x.  N
) )
8584oveq1d 5877 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
8685adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  ( ( M  x.  N
)  .x.  X )
)
8733adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Grp )
881adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  ZZ )
89 nn0z 9241 . . . . . . . . 9  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
9089ad2antll 491 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  ZZ )
9114, 15mulgcl 12856 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
9287, 90, 81, 91syl3anc 1236 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u N  .x.  X
)  e.  B )
9314, 15, 35mulgneg2 12872 . . . . . . 7  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( -u N  .x.  X )  e.  B )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( invg `  G ) `
 ( -u N  .x.  X ) ) ) )
9487, 88, 92, 93syl3anc 1236 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( invg `  G ) `
 ( -u N  .x.  X ) ) ) )
9514, 15, 35mulgneg 12857 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( ( invg `  G ) `  ( -u N  .x.  X ) ) )
9687, 90, 81, 95syl3anc 1236 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( ( invg `  G
) `  ( -u N  .x.  X ) ) )
9720negnegd 8230 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  -u -u N  =  N )
9897adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u -u N  =  N
)
9998oveq1d 5877 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( N 
.x.  X ) )
10096, 99eqtr3d 2208 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( invg `  G ) `  ( -u N  .x.  X ) )  =  ( N 
.x.  X ) )
101100oveq2d 5878 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  ( M  .x.  ( N 
.x.  X ) ) )
10294, 101eqtrd 2206 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
10383, 86, 1023eqtr3d 2214 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
104103ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
10518, 58, 77, 104ccased 963 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e. 
NN0  \/  -u N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
1064, 8, 105mp2and 433 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 706    /\ w3a 976    = wceq 1351    e. wcel 2144   ` cfv 5205  (class class class)co 5862   RRcr 7782    x. cmul 7788   -ucneg 8100   NN0cn0 9144   ZZcz 9221   Basecbs 12425   Mndcmnd 12679   Grpcgrp 12735   invgcminusg 12736  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-mulrcl 7882  ax-addcom 7883  ax-mulcom 7884  ax-addass 7885  ax-mulass 7886  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-1rid 7890  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-fz 9975  df-fzo 10108  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-mulg 12840
This theorem is referenced by:  mulgassr  12876
  Copyright terms: Public domain W3C validator