ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgass Unicode version

Theorem mulgass 13289
Description: Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgass  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 1005 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
2 elznn0 9341 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
32simprbi 275 . . 3  |-  ( M  e.  ZZ  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
41, 3syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
5 simpr2 1006 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
6 elznn0 9341 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
76simprbi 275 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
85, 7syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
9 grpmnd 13139 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Mnd )
109ad2antrr 488 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
11 simprl 529 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  M  e.  NN0 )
12 simprr 531 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
13 simplr3 1043 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
14 mulgass.b . . . . . 6  |-  B  =  ( Base `  G
)
15 mulgass.t . . . . . 6  |-  .x.  =  (.g
`  G )
1614, 15mulgnn0ass 13288 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
1710, 11, 12, 13, 16syl13anc 1251 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
1817ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
191zcnd 9449 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
205zcnd 9449 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
2119, 20mulneg1d 8437 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
2221adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u M  x.  N
)  =  -u ( M  x.  N )
)
2322oveq1d 5937 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
249ad2antrr 488 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
25 simprl 529 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  -u M  e.  NN0 )
26 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
27 simpr3 1007 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  X  e.  B )
2827adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
2914, 15mulgnn0ass 13288 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( -u M  x.  N ) 
.x.  X )  =  ( -u M  .x.  ( N  .x.  X ) ) )
3024, 25, 26, 28, 29syl13anc 1251 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
3123, 30eqtr3d 2231 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
32 fveq2 5558 . . . . . . 7  |-  ( (
-u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) )  -> 
( ( invg `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) ) )
33 simpl 109 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  G  e.  Grp )
341, 5zmulcld 9454 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  N )  e.  ZZ )
35 eqid 2196 . . . . . . . . . . . 12  |-  ( invg `  G )  =  ( invg `  G )
3614, 15, 35mulgneg 13270 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3733, 34, 27, 36syl3anc 1249 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3837fveq2d 5562 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  x.  N
)  .x.  X )
) ) )
3914, 15mulgcl 13269 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  x.  N )  .x.  X
)  e.  B )
4033, 34, 27, 39syl3anc 1249 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  e.  B
)
4114, 35grpinvinv 13199 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( M  x.  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4240, 41syldan 282 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4338, 42eqtrd 2229 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( M  x.  N )  .x.  X
) )
4414, 15mulgcl 13269 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4533, 5, 27, 44syl3anc 1249 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
4614, 15, 35mulgneg 13270 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( ( invg `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )
4733, 1, 45, 46syl3anc 1249 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( ( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )
4847fveq2d 5562 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) ) )
4914, 15mulgcl 13269 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( M  .x.  ( N  .x.  X ) )  e.  B )
5033, 1, 45, 49syl3anc 1249 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( N  .x.  X
) )  e.  B
)
5114, 35grpinvinv 13199 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  .x.  ( N 
.x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
5250, 51syldan 282 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5348, 52eqtrd 2229 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( invg `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5443, 53eqeq12d 2211 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( invg `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
5532, 54imbitrid 154 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u ( M  x.  N
)  .x.  X )  =  ( -u M  .x.  ( N  .x.  X
) )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
5655imp 124 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u ( M  x.  N )  .x.  X )  =  (
-u M  .x.  ( N  .x.  X ) ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
5731, 56syldan 282 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
5857ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
599ad2antrr 488 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
60 simprl 529 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  NN0 )
61 simprr 531 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
6227adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
6314, 15mulgnn0ass 13288 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  -u N ) 
.x.  X )  =  ( M  .x.  ( -u N  .x.  X ) ) )
6459, 60, 61, 62, 63syl13anc 1251 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( M 
.x.  ( -u N  .x.  X ) ) )
6519, 20mulneg2d 8438 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  -u N )  = 
-u ( M  x.  N ) )
6665adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  x.  -u N
)  =  -u ( M  x.  N )
)
6766oveq1d 5937 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
6814, 15, 35mulgneg 13270 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
6933, 5, 27, 68syl3anc 1249 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `  ( N  .x.  X ) ) )
7069oveq2d 5938 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( M  .x.  (
( invg `  G ) `  ( N  .x.  X ) ) ) )
7114, 15, 35mulgneg2 13286 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( M  .x.  ( ( invg `  G ) `  ( N  .x.  X ) ) ) )
7233, 1, 45, 71syl3anc 1249 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( M  .x.  ( ( invg `  G
) `  ( N  .x.  X ) ) ) )
7370, 72eqtr4d 2232 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7473adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7564, 67, 743eqtr3d 2237 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
7675, 56syldan 282 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
7776ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
789ad2antrr 488 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
79 simprl 529 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u M  e.  NN0 )
80 simprr 531 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
8127adantr 276 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
8214, 15mulgnn0ass 13288 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( -u M  .x.  ( -u N  .x.  X ) ) )
8378, 79, 80, 81, 82syl13anc 1251 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  (
-u M  .x.  ( -u N  .x.  X ) ) )
8419, 20mul2negd 8439 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  -u N )  =  ( M  x.  N
) )
8584oveq1d 5937 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
8685adantr 276 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  ( ( M  x.  N
)  .x.  X )
)
8733adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Grp )
881adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  ZZ )
89 nn0z 9346 . . . . . . . . 9  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
9089ad2antll 491 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  ZZ )
9114, 15mulgcl 13269 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
9287, 90, 81, 91syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u N  .x.  X
)  e.  B )
9314, 15, 35mulgneg2 13286 . . . . . . 7  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( -u N  .x.  X )  e.  B )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( invg `  G ) `
 ( -u N  .x.  X ) ) ) )
9487, 88, 92, 93syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( invg `  G ) `
 ( -u N  .x.  X ) ) ) )
9514, 15, 35mulgneg 13270 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( ( invg `  G ) `  ( -u N  .x.  X ) ) )
9687, 90, 81, 95syl3anc 1249 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( ( invg `  G
) `  ( -u N  .x.  X ) ) )
9720negnegd 8328 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  -u -u N  =  N )
9897adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u -u N  =  N
)
9998oveq1d 5937 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( N 
.x.  X ) )
10096, 99eqtr3d 2231 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( invg `  G ) `  ( -u N  .x.  X ) )  =  ( N 
.x.  X ) )
101100oveq2d 5938 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  ( M  .x.  ( N 
.x.  X ) ) )
10294, 101eqtrd 2229 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
10383, 86, 1023eqtr3d 2237 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
104103ex 115 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
10518, 58, 77, 104ccased 967 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e. 
NN0  \/  -u N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
1064, 8, 105mp2and 433 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   RRcr 7878    x. cmul 7884   -ucneg 8198   NN0cn0 9249   ZZcz 9326   Basecbs 12678   Mndcmnd 13057   Grpcgrp 13132   invgcminusg 13133  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgassr  13290  mulgrhm  14165
  Copyright terms: Public domain W3C validator