| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgass | Unicode version | ||
| Description: Product of group
multiples, generalized to |
| Ref | Expression |
|---|---|
| mulgass.b |
|
| mulgass.t |
|
| Ref | Expression |
|---|---|
| mulgass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1005 |
. . 3
| |
| 2 | elznn0 9358 |
. . . 4
| |
| 3 | 2 | simprbi 275 |
. . 3
|
| 4 | 1, 3 | syl 14 |
. 2
|
| 5 | simpr2 1006 |
. . 3
| |
| 6 | elznn0 9358 |
. . . 4
| |
| 7 | 6 | simprbi 275 |
. . 3
|
| 8 | 5, 7 | syl 14 |
. 2
|
| 9 | grpmnd 13209 |
. . . . . 6
| |
| 10 | 9 | ad2antrr 488 |
. . . . 5
|
| 11 | simprl 529 |
. . . . 5
| |
| 12 | simprr 531 |
. . . . 5
| |
| 13 | simplr3 1043 |
. . . . 5
| |
| 14 | mulgass.b |
. . . . . 6
| |
| 15 | mulgass.t |
. . . . . 6
| |
| 16 | 14, 15 | mulgnn0ass 13364 |
. . . . 5
|
| 17 | 10, 11, 12, 13, 16 | syl13anc 1251 |
. . . 4
|
| 18 | 17 | ex 115 |
. . 3
|
| 19 | 1 | zcnd 9466 |
. . . . . . . . 9
|
| 20 | 5 | zcnd 9466 |
. . . . . . . . 9
|
| 21 | 19, 20 | mulneg1d 8454 |
. . . . . . . 8
|
| 22 | 21 | adantr 276 |
. . . . . . 7
|
| 23 | 22 | oveq1d 5940 |
. . . . . 6
|
| 24 | 9 | ad2antrr 488 |
. . . . . . 7
|
| 25 | simprl 529 |
. . . . . . 7
| |
| 26 | simprr 531 |
. . . . . . 7
| |
| 27 | simpr3 1007 |
. . . . . . . 8
| |
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 14, 15 | mulgnn0ass 13364 |
. . . . . . 7
|
| 30 | 24, 25, 26, 28, 29 | syl13anc 1251 |
. . . . . 6
|
| 31 | 23, 30 | eqtr3d 2231 |
. . . . 5
|
| 32 | fveq2 5561 |
. . . . . . 7
| |
| 33 | simpl 109 |
. . . . . . . . . . 11
| |
| 34 | 1, 5 | zmulcld 9471 |
. . . . . . . . . . 11
|
| 35 | eqid 2196 |
. . . . . . . . . . . 12
| |
| 36 | 14, 15, 35 | mulgneg 13346 |
. . . . . . . . . . 11
|
| 37 | 33, 34, 27, 36 | syl3anc 1249 |
. . . . . . . . . 10
|
| 38 | 37 | fveq2d 5565 |
. . . . . . . . 9
|
| 39 | 14, 15 | mulgcl 13345 |
. . . . . . . . . . 11
|
| 40 | 33, 34, 27, 39 | syl3anc 1249 |
. . . . . . . . . 10
|
| 41 | 14, 35 | grpinvinv 13269 |
. . . . . . . . . 10
|
| 42 | 40, 41 | syldan 282 |
. . . . . . . . 9
|
| 43 | 38, 42 | eqtrd 2229 |
. . . . . . . 8
|
| 44 | 14, 15 | mulgcl 13345 |
. . . . . . . . . . . 12
|
| 45 | 33, 5, 27, 44 | syl3anc 1249 |
. . . . . . . . . . 11
|
| 46 | 14, 15, 35 | mulgneg 13346 |
. . . . . . . . . . 11
|
| 47 | 33, 1, 45, 46 | syl3anc 1249 |
. . . . . . . . . 10
|
| 48 | 47 | fveq2d 5565 |
. . . . . . . . 9
|
| 49 | 14, 15 | mulgcl 13345 |
. . . . . . . . . . 11
|
| 50 | 33, 1, 45, 49 | syl3anc 1249 |
. . . . . . . . . 10
|
| 51 | 14, 35 | grpinvinv 13269 |
. . . . . . . . . 10
|
| 52 | 50, 51 | syldan 282 |
. . . . . . . . 9
|
| 53 | 48, 52 | eqtrd 2229 |
. . . . . . . 8
|
| 54 | 43, 53 | eqeq12d 2211 |
. . . . . . 7
|
| 55 | 32, 54 | imbitrid 154 |
. . . . . 6
|
| 56 | 55 | imp 124 |
. . . . 5
|
| 57 | 31, 56 | syldan 282 |
. . . 4
|
| 58 | 57 | ex 115 |
. . 3
|
| 59 | 9 | ad2antrr 488 |
. . . . . . 7
|
| 60 | simprl 529 |
. . . . . . 7
| |
| 61 | simprr 531 |
. . . . . . 7
| |
| 62 | 27 | adantr 276 |
. . . . . . 7
|
| 63 | 14, 15 | mulgnn0ass 13364 |
. . . . . . 7
|
| 64 | 59, 60, 61, 62, 63 | syl13anc 1251 |
. . . . . 6
|
| 65 | 19, 20 | mulneg2d 8455 |
. . . . . . . 8
|
| 66 | 65 | adantr 276 |
. . . . . . 7
|
| 67 | 66 | oveq1d 5940 |
. . . . . 6
|
| 68 | 14, 15, 35 | mulgneg 13346 |
. . . . . . . . . 10
|
| 69 | 33, 5, 27, 68 | syl3anc 1249 |
. . . . . . . . 9
|
| 70 | 69 | oveq2d 5941 |
. . . . . . . 8
|
| 71 | 14, 15, 35 | mulgneg2 13362 |
. . . . . . . . 9
|
| 72 | 33, 1, 45, 71 | syl3anc 1249 |
. . . . . . . 8
|
| 73 | 70, 72 | eqtr4d 2232 |
. . . . . . 7
|
| 74 | 73 | adantr 276 |
. . . . . 6
|
| 75 | 64, 67, 74 | 3eqtr3d 2237 |
. . . . 5
|
| 76 | 75, 56 | syldan 282 |
. . . 4
|
| 77 | 76 | ex 115 |
. . 3
|
| 78 | 9 | ad2antrr 488 |
. . . . . 6
|
| 79 | simprl 529 |
. . . . . 6
| |
| 80 | simprr 531 |
. . . . . 6
| |
| 81 | 27 | adantr 276 |
. . . . . 6
|
| 82 | 14, 15 | mulgnn0ass 13364 |
. . . . . 6
|
| 83 | 78, 79, 80, 81, 82 | syl13anc 1251 |
. . . . 5
|
| 84 | 19, 20 | mul2negd 8456 |
. . . . . . 7
|
| 85 | 84 | oveq1d 5940 |
. . . . . 6
|
| 86 | 85 | adantr 276 |
. . . . 5
|
| 87 | 33 | adantr 276 |
. . . . . . 7
|
| 88 | 1 | adantr 276 |
. . . . . . 7
|
| 89 | nn0z 9363 |
. . . . . . . . 9
| |
| 90 | 89 | ad2antll 491 |
. . . . . . . 8
|
| 91 | 14, 15 | mulgcl 13345 |
. . . . . . . 8
|
| 92 | 87, 90, 81, 91 | syl3anc 1249 |
. . . . . . 7
|
| 93 | 14, 15, 35 | mulgneg2 13362 |
. . . . . . 7
|
| 94 | 87, 88, 92, 93 | syl3anc 1249 |
. . . . . 6
|
| 95 | 14, 15, 35 | mulgneg 13346 |
. . . . . . . . 9
|
| 96 | 87, 90, 81, 95 | syl3anc 1249 |
. . . . . . . 8
|
| 97 | 20 | negnegd 8345 |
. . . . . . . . . 10
|
| 98 | 97 | adantr 276 |
. . . . . . . . 9
|
| 99 | 98 | oveq1d 5940 |
. . . . . . . 8
|
| 100 | 96, 99 | eqtr3d 2231 |
. . . . . . 7
|
| 101 | 100 | oveq2d 5941 |
. . . . . 6
|
| 102 | 94, 101 | eqtrd 2229 |
. . . . 5
|
| 103 | 83, 86, 102 | 3eqtr3d 2237 |
. . . 4
|
| 104 | 103 | ex 115 |
. . 3
|
| 105 | 18, 58, 77, 104 | ccased 967 |
. 2
|
| 106 | 4, 8, 105 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: mulgassr 13366 mulgrhm 14241 |
| Copyright terms: Public domain | W3C validator |