![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrid | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
Ref | Expression |
---|---|
imbitrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbitrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbitrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrid.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpd 144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl5 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1859 gencl 2792 spsbc 2997 prexg 4240 posng 4731 sosng 4732 optocl 4735 relcnvexb 5205 funimass1 5331 dmfex 5443 f1ocnvb 5514 eqfnfv2 5656 elpreima 5677 dff13 5811 f1ocnvfv 5822 f1ocnvfvb 5823 fliftfun 5839 eusvobj2 5904 mpoxopn0yelv 6292 rntpos 6310 erexb 6612 findcard2 6945 findcard2s 6946 xpfi 6986 sbthlemi3 7018 enq0tr 7494 addnqprllem 7587 addnqprulem 7588 distrlem1prl 7642 distrlem1pru 7643 recexprlem1ssl 7693 recexprlem1ssu 7694 elrealeu 7889 addcan 8199 addcan2 8200 neg11 8270 negreb 8284 mulcanapd 8680 receuap 8688 cju 8980 nn1suc 9001 nnaddcl 9002 nndivtr 9024 znegclb 9350 zaddcllempos 9354 zmulcl 9370 zeo 9422 uz11 9615 uzp1 9626 eqreznegel 9679 xneg11 9900 xnegdi 9934 modqadd1 10432 modqmul1 10448 frec2uzltd 10474 bccmpl 10825 fz1eqb 10861 eqwrd 10954 cj11 11049 rennim 11146 resqrexlemgt0 11164 efne0 11821 dvdsabseq 11989 pcfac 12488 divsfval 12911 grpinveu 13110 mulgass 13229 dvreq1 13638 unitrrg 13763 uptx 14442 hmeocnvb 14486 tgioo 14714 bj-nnbidc 15249 bj-prexg 15403 strcollnft 15476 |
Copyright terms: Public domain | W3C validator |