| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| imbitrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. 2
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1862 gencl 2795 spsbc 3001 prexg 4244 posng 4735 sosng 4736 optocl 4739 relcnvexb 5209 funimass1 5335 dmfex 5447 f1ocnvb 5518 eqfnfv2 5660 elpreima 5681 dff13 5815 f1ocnvfv 5826 f1ocnvfvb 5827 fliftfun 5843 eusvobj2 5908 mpoxopn0yelv 6297 rntpos 6315 erexb 6617 findcard2 6950 findcard2s 6951 xpfi 6993 sbthlemi3 7025 enq0tr 7501 addnqprllem 7594 addnqprulem 7595 distrlem1prl 7649 distrlem1pru 7650 recexprlem1ssl 7700 recexprlem1ssu 7701 elrealeu 7896 addcan 8206 addcan2 8207 neg11 8277 negreb 8291 mulcanapd 8688 receuap 8696 cju 8988 nn1suc 9009 nnaddcl 9010 nndivtr 9032 znegclb 9359 zaddcllempos 9363 zmulcl 9379 zeo 9431 uz11 9624 uzp1 9635 eqreznegel 9688 xneg11 9909 xnegdi 9943 modqadd1 10453 modqmul1 10469 frec2uzltd 10495 bccmpl 10846 fz1eqb 10882 eqwrd 10975 cj11 11070 rennim 11167 resqrexlemgt0 11185 efne0 11843 dvdsabseq 12012 pcfac 12519 divsfval 12971 grpinveu 13170 mulgass 13289 dvreq1 13698 unitrrg 13823 uptx 14510 hmeocnvb 14554 tgioo 14790 bj-nnbidc 15403 bj-prexg 15557 strcollnft 15630 |
| Copyright terms: Public domain | W3C validator |