| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| imbitrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. 2
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1872 gencl 2806 spsbc 3014 prexg 4263 posng 4755 sosng 4756 optocl 4759 relcnvexb 5231 funimass1 5360 dmfex 5477 f1ocnvb 5548 eqfnfv2 5691 elpreima 5712 dff13 5850 f1ocnvfv 5861 f1ocnvfvb 5862 fliftfun 5878 eusvobj2 5943 mpoxopn0yelv 6338 rntpos 6356 erexb 6658 findcard2 7001 findcard2s 7002 xpfi 7044 sbthlemi3 7076 enq0tr 7567 addnqprllem 7660 addnqprulem 7661 distrlem1prl 7715 distrlem1pru 7716 recexprlem1ssl 7766 recexprlem1ssu 7767 elrealeu 7962 addcan 8272 addcan2 8273 neg11 8343 negreb 8357 mulcanapd 8754 receuap 8762 cju 9054 nn1suc 9075 nnaddcl 9076 nndivtr 9098 znegclb 9425 zaddcllempos 9429 zmulcl 9446 zeo 9498 uz11 9691 uzp1 9702 eqreznegel 9755 xneg11 9976 xnegdi 10010 modqadd1 10528 modqmul1 10544 frec2uzltd 10570 bccmpl 10921 fz1eqb 10957 eqwrd 11056 ccatopth 11192 ccatopth2 11193 cj11 11291 rennim 11388 resqrexlemgt0 11406 efne0 12064 dvdsabseq 12233 pcfac 12748 divsfval 13235 grpinveu 13445 mulgass 13570 dvreq1 13979 unitrrg 14104 uptx 14821 hmeocnvb 14865 tgioo 15101 bj-nnbidc 15832 bj-prexg 15985 strcollnft 16058 |
| Copyright terms: Public domain | W3C validator |