| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| imbitrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. 2
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1870 gencl 2803 spsbc 3009 prexg 4254 posng 4746 sosng 4747 optocl 4750 relcnvexb 5221 funimass1 5350 dmfex 5464 f1ocnvb 5535 eqfnfv2 5677 elpreima 5698 dff13 5836 f1ocnvfv 5847 f1ocnvfvb 5848 fliftfun 5864 eusvobj2 5929 mpoxopn0yelv 6324 rntpos 6342 erexb 6644 findcard2 6985 findcard2s 6986 xpfi 7028 sbthlemi3 7060 enq0tr 7546 addnqprllem 7639 addnqprulem 7640 distrlem1prl 7694 distrlem1pru 7695 recexprlem1ssl 7745 recexprlem1ssu 7746 elrealeu 7941 addcan 8251 addcan2 8252 neg11 8322 negreb 8336 mulcanapd 8733 receuap 8741 cju 9033 nn1suc 9054 nnaddcl 9055 nndivtr 9077 znegclb 9404 zaddcllempos 9408 zmulcl 9425 zeo 9477 uz11 9670 uzp1 9681 eqreznegel 9734 xneg11 9955 xnegdi 9989 modqadd1 10504 modqmul1 10520 frec2uzltd 10546 bccmpl 10897 fz1eqb 10933 eqwrd 11032 cj11 11187 rennim 11284 resqrexlemgt0 11302 efne0 11960 dvdsabseq 12129 pcfac 12644 divsfval 13131 grpinveu 13341 mulgass 13466 dvreq1 13875 unitrrg 14000 uptx 14717 hmeocnvb 14761 tgioo 14997 bj-nnbidc 15655 bj-prexg 15809 strcollnft 15882 |
| Copyright terms: Public domain | W3C validator |