| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrid | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 12-Jan-1993.) |
| Ref | Expression |
|---|---|
| imbitrid.1 |
|
| imbitrid.2 |
|
| Ref | Expression |
|---|---|
| imbitrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 |
. 2
| |
| 2 | imbitrid.2 |
. . 3
| |
| 3 | 2 | biimpd 144 |
. 2
|
| 4 | 1, 3 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl5ibcom 155 imbitrrid 156 sbft 1894 gencl 2832 spsbc 3040 prexg 4294 posng 4790 sosng 4791 optocl 4794 relcnvexb 5267 funimass1 5397 dmfex 5514 f1ocnvb 5585 eqfnfv2 5732 elpreima 5753 dff13 5891 f1ocnvfv 5902 f1ocnvfvb 5903 fliftfun 5919 eusvobj2 5986 mpoxopn0yelv 6383 rntpos 6401 erexb 6703 findcard2 7047 findcard2s 7048 xpfi 7090 sbthlemi3 7122 enq0tr 7617 addnqprllem 7710 addnqprulem 7711 distrlem1prl 7765 distrlem1pru 7766 recexprlem1ssl 7816 recexprlem1ssu 7817 elrealeu 8012 addcan 8322 addcan2 8323 neg11 8393 negreb 8407 mulcanapd 8804 receuap 8812 cju 9104 nn1suc 9125 nnaddcl 9126 nndivtr 9148 znegclb 9475 zaddcllempos 9479 zmulcl 9496 zeo 9548 uz11 9741 uzp1 9752 eqreznegel 9805 xneg11 10026 xnegdi 10060 modqadd1 10578 modqmul1 10594 frec2uzltd 10620 bccmpl 10971 fz1eqb 11007 eqwrd 11107 ccatopth 11243 ccatopth2 11244 swrdccatin2 11256 cj11 11411 rennim 11508 resqrexlemgt0 11526 efne0 12184 dvdsabseq 12353 pcfac 12868 divsfval 13356 grpinveu 13566 mulgass 13691 dvreq1 14100 unitrrg 14225 uptx 14942 hmeocnvb 14986 tgioo 15222 uspgrf1oedg 15968 bj-nnbidc 16079 bj-prexg 16232 strcollnft 16305 |
| Copyright terms: Public domain | W3C validator |