![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqtrrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtrrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | breqtrrdi.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | breqtrdi 4071 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: enpr2d 6873 fiunsnnn 6939 exmidpw2en 6970 unsnfi 6977 eninl 7158 eninr 7159 difinfinf 7162 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 dju1en 7275 djucomen 7278 djuassen 7279 xpdjuen 7280 gtndiv 9415 intqfrac2 10393 uzenom 10499 xrmaxiflemval 11396 ege2le3 11817 eirraplem 11923 pcprendvds 12431 pcpremul 12434 pcfaclem 12490 infpnlem2 12501 2strstr1g 12742 lmcn2 14459 dveflem 14905 tangtx 15014 ioocosf1o 15030 lgsdirprm 15191 sbthom 15586 nconstwlpolemgt0 15624 |
Copyright terms: Public domain | W3C validator |