![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqtrrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtrrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | breqtrrdi.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2193 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | breqtrdi 4059 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 |
This theorem is referenced by: enpr2d 6844 fiunsnnn 6910 exmidpw2en 6941 unsnfi 6948 eninl 7127 eninr 7128 difinfinf 7131 exmidfodomrlemr 7232 exmidfodomrlemrALT 7233 dju1en 7243 djucomen 7246 djuassen 7247 xpdjuen 7248 gtndiv 9379 intqfrac2 10352 uzenom 10458 xrmaxiflemval 11293 ege2le3 11714 eirraplem 11819 pcprendvds 12325 pcpremul 12328 pcfaclem 12384 infpnlem2 12395 2strstr1g 12636 lmcn2 14257 dveflem 14664 tangtx 14736 ioocosf1o 14752 lgsdirprm 14913 sbthom 15253 nconstwlpolemgt0 15291 |
Copyright terms: Public domain | W3C validator |