![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
breqtrrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtrrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | breqtrrdi.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | breqtrdi 4070 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: enpr2d 6871 fiunsnnn 6937 exmidpw2en 6968 unsnfi 6975 eninl 7156 eninr 7157 difinfinf 7160 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 dju1en 7273 djucomen 7276 djuassen 7277 xpdjuen 7278 gtndiv 9412 intqfrac2 10390 uzenom 10496 xrmaxiflemval 11393 ege2le3 11814 eirraplem 11920 pcprendvds 12428 pcpremul 12431 pcfaclem 12487 infpnlem2 12498 2strstr1g 12739 lmcn2 14448 dveflem 14872 tangtx 14973 ioocosf1o 14989 lgsdirprm 15150 sbthom 15516 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |