Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrdi.1 | |
breqtrrdi.2 |
Ref | Expression |
---|---|
breqtrrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrdi.1 | . 2 | |
2 | breqtrrdi.2 | . . 3 | |
3 | 2 | eqcomi 2174 | . 2 |
4 | 1, 3 | breqtrdi 4028 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: enpr2d 6793 fiunsnnn 6857 unsnfi 6894 eninl 7072 eninr 7073 difinfinf 7076 exmidfodomrlemr 7172 exmidfodomrlemrALT 7173 dju1en 7183 djucomen 7186 djuassen 7187 xpdjuen 7188 gtndiv 9300 intqfrac2 10268 uzenom 10374 xrmaxiflemval 11206 ege2le3 11627 eirraplem 11732 pcprendvds 12237 pcpremul 12240 pcfaclem 12294 infpnlem2 12305 2strstr1g 12514 lmcn2 13039 dveflem 13446 tangtx 13518 ioocosf1o 13534 lgsdirprm 13694 sbthom 14023 nconstwlpolemgt0 14060 |
Copyright terms: Public domain | W3C validator |