| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 |
|
| breqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| breqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 |
. 2
| |
| 2 | breqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2200 |
. 2
|
| 4 | 1, 3 | breqtrdi 4075 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: enpr2d 6885 fiunsnnn 6951 exmidpw2en 6982 unsnfi 6989 eninl 7172 eninr 7173 difinfinf 7176 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 dju1en 7298 djucomen 7301 djuassen 7302 xpdjuen 7303 gtndiv 9440 intqfrac2 10430 uzenom 10536 xrmaxiflemval 11434 ege2le3 11855 eirraplem 11961 bitsfzo 12139 pcprendvds 12486 pcpremul 12489 pcfaclem 12545 infpnlem2 12556 2strstr1g 12826 lmcn2 14624 dveflem 15070 tangtx 15182 ioocosf1o 15198 lgsdirprm 15383 sbthom 15783 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |