| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrdi.1 |
|
| breqtrrdi.2 |
|
| Ref | Expression |
|---|---|
| breqtrrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrdi.1 |
. 2
| |
| 2 | breqtrrdi.2 |
. . 3
| |
| 3 | 2 | eqcomi 2209 |
. 2
|
| 4 | 1, 3 | breqtrdi 4086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: enpr2d 6913 fiunsnnn 6980 exmidpw2en 7011 unsnfi 7018 eninl 7201 eninr 7202 difinfinf 7205 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 dju1en 7327 djucomen 7330 djuassen 7331 xpdjuen 7332 gtndiv 9470 intqfrac2 10466 uzenom 10572 xrmaxiflemval 11594 ege2le3 12015 eirraplem 12121 bitsfzo 12299 pcprendvds 12646 pcpremul 12649 pcfaclem 12705 infpnlem2 12716 2strstr1g 12987 lmcn2 14785 dveflem 15231 tangtx 15343 ioocosf1o 15359 lgsdirprm 15544 sbthom 16002 nconstwlpolemgt0 16040 |
| Copyright terms: Public domain | W3C validator |