ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdva Unicode version

Theorem eqbrrdva 4799
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1  |-  ( ph  ->  A  C_  ( C  X.  D ) )
eqbrrdva.2  |-  ( ph  ->  B  C_  ( C  X.  D ) )
eqbrrdva.3  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
Assertion
Ref Expression
eqbrrdva  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4  |-  ( ph  ->  A  C_  ( C  X.  D ) )
2 xpss 4736 . . . 4  |-  ( C  X.  D )  C_  ( _V  X.  _V )
31, 2sstrdi 3169 . . 3  |-  ( ph  ->  A  C_  ( _V  X.  _V ) )
4 df-rel 4635 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
53, 4sylibr 134 . 2  |-  ( ph  ->  Rel  A )
6 eqbrrdva.2 . . . 4  |-  ( ph  ->  B  C_  ( C  X.  D ) )
76, 2sstrdi 3169 . . 3  |-  ( ph  ->  B  C_  ( _V  X.  _V ) )
8 df-rel 4635 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
97, 8sylibr 134 . 2  |-  ( ph  ->  Rel  B )
101ssbrd 4048 . . . 4  |-  ( ph  ->  ( x A y  ->  x ( C  X.  D ) y ) )
11 brxp 4659 . . . 4  |-  ( x ( C  X.  D
) y  <->  ( x  e.  C  /\  y  e.  D ) )
1210, 11imbitrdi 161 . . 3  |-  ( ph  ->  ( x A y  ->  ( x  e.  C  /\  y  e.  D ) ) )
136ssbrd 4048 . . . 4  |-  ( ph  ->  ( x B y  ->  x ( C  X.  D ) y ) )
1413, 11imbitrdi 161 . . 3  |-  ( ph  ->  ( x B y  ->  ( x  e.  C  /\  y  e.  D ) ) )
15 eqbrrdva.3 . . . 4  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
16153expib 1206 . . 3  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D )  ->  (
x A y  <->  x B
y ) ) )
1712, 14, 16pm5.21ndd 705 . 2  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
185, 9, 17eqbrrdv 4725 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   class class class wbr 4005    X. cxp 4626   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator