| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrrdva | Unicode version | ||
| Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.) |
| Ref | Expression |
|---|---|
| eqbrrdva.1 |
|
| eqbrrdva.2 |
|
| eqbrrdva.3 |
|
| Ref | Expression |
|---|---|
| eqbrrdva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdva.1 |
. . . 4
| |
| 2 | xpss 4783 |
. . . 4
| |
| 3 | 1, 2 | sstrdi 3205 |
. . 3
|
| 4 | df-rel 4682 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | eqbrrdva.2 |
. . . 4
| |
| 7 | 6, 2 | sstrdi 3205 |
. . 3
|
| 8 | df-rel 4682 |
. . 3
| |
| 9 | 7, 8 | sylibr 134 |
. 2
|
| 10 | 1 | ssbrd 4087 |
. . . 4
|
| 11 | brxp 4706 |
. . . 4
| |
| 12 | 10, 11 | imbitrdi 161 |
. . 3
|
| 13 | 6 | ssbrd 4087 |
. . . 4
|
| 14 | 13, 11 | imbitrdi 161 |
. . 3
|
| 15 | eqbrrdva.3 |
. . . 4
| |
| 16 | 15 | 3expib 1209 |
. . 3
|
| 17 | 12, 14, 16 | pm5.21ndd 707 |
. 2
|
| 18 | 5, 9, 17 | eqbrrdv 4772 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |