ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdva Unicode version

Theorem eqbrrdva 4809
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1  |-  ( ph  ->  A  C_  ( C  X.  D ) )
eqbrrdva.2  |-  ( ph  ->  B  C_  ( C  X.  D ) )
eqbrrdva.3  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
Assertion
Ref Expression
eqbrrdva  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4  |-  ( ph  ->  A  C_  ( C  X.  D ) )
2 xpss 4746 . . . 4  |-  ( C  X.  D )  C_  ( _V  X.  _V )
31, 2sstrdi 3179 . . 3  |-  ( ph  ->  A  C_  ( _V  X.  _V ) )
4 df-rel 4645 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
53, 4sylibr 134 . 2  |-  ( ph  ->  Rel  A )
6 eqbrrdva.2 . . . 4  |-  ( ph  ->  B  C_  ( C  X.  D ) )
76, 2sstrdi 3179 . . 3  |-  ( ph  ->  B  C_  ( _V  X.  _V ) )
8 df-rel 4645 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
97, 8sylibr 134 . 2  |-  ( ph  ->  Rel  B )
101ssbrd 4058 . . . 4  |-  ( ph  ->  ( x A y  ->  x ( C  X.  D ) y ) )
11 brxp 4669 . . . 4  |-  ( x ( C  X.  D
) y  <->  ( x  e.  C  /\  y  e.  D ) )
1210, 11imbitrdi 161 . . 3  |-  ( ph  ->  ( x A y  ->  ( x  e.  C  /\  y  e.  D ) ) )
136ssbrd 4058 . . . 4  |-  ( ph  ->  ( x B y  ->  x ( C  X.  D ) y ) )
1413, 11imbitrdi 161 . . 3  |-  ( ph  ->  ( x B y  ->  ( x  e.  C  /\  y  e.  D ) ) )
15 eqbrrdva.3 . . . 4  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
16153expib 1207 . . 3  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D )  ->  (
x A y  <->  x B
y ) ) )
1712, 14, 16pm5.21ndd 706 . 2  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
185, 9, 17eqbrrdv 4735 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   _Vcvv 2749    C_ wss 3141   class class class wbr 4015    X. cxp 4636   Rel wrel 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator