ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdva Unicode version

Theorem eqbrrdva 4836
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1  |-  ( ph  ->  A  C_  ( C  X.  D ) )
eqbrrdva.2  |-  ( ph  ->  B  C_  ( C  X.  D ) )
eqbrrdva.3  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
Assertion
Ref Expression
eqbrrdva  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4  |-  ( ph  ->  A  C_  ( C  X.  D ) )
2 xpss 4771 . . . 4  |-  ( C  X.  D )  C_  ( _V  X.  _V )
31, 2sstrdi 3195 . . 3  |-  ( ph  ->  A  C_  ( _V  X.  _V ) )
4 df-rel 4670 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
53, 4sylibr 134 . 2  |-  ( ph  ->  Rel  A )
6 eqbrrdva.2 . . . 4  |-  ( ph  ->  B  C_  ( C  X.  D ) )
76, 2sstrdi 3195 . . 3  |-  ( ph  ->  B  C_  ( _V  X.  _V ) )
8 df-rel 4670 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
97, 8sylibr 134 . 2  |-  ( ph  ->  Rel  B )
101ssbrd 4076 . . . 4  |-  ( ph  ->  ( x A y  ->  x ( C  X.  D ) y ) )
11 brxp 4694 . . . 4  |-  ( x ( C  X.  D
) y  <->  ( x  e.  C  /\  y  e.  D ) )
1210, 11imbitrdi 161 . . 3  |-  ( ph  ->  ( x A y  ->  ( x  e.  C  /\  y  e.  D ) ) )
136ssbrd 4076 . . . 4  |-  ( ph  ->  ( x B y  ->  x ( C  X.  D ) y ) )
1413, 11imbitrdi 161 . . 3  |-  ( ph  ->  ( x B y  ->  ( x  e.  C  /\  y  e.  D ) ) )
15 eqbrrdva.3 . . . 4  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
16153expib 1208 . . 3  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D )  ->  (
x A y  <->  x B
y ) ) )
1712, 14, 16pm5.21ndd 706 . 2  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
185, 9, 17eqbrrdv 4760 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   class class class wbr 4033    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator