ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 Unicode version

Theorem brrelex12 4757
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4726 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32ssbrd 4126 . . 3  |-  ( Rel 
R  ->  ( A R B  ->  A ( _V  X.  _V ) B ) )
43imp 124 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A
( _V  X.  _V ) B )
5 brxp 4750 . 2  |-  ( A ( _V  X.  _V ) B  <->  ( A  e. 
_V  /\  B  e.  _V ) )
64, 5sylib 122 1  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    C_ wss 3197   class class class wbr 4083    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by:  brrelex1  4758  brrelex  4759  brrelex2  4760  brrelex12i  4761  relbrcnvg  5107  ovprc  6037  ersym  6692  relelec  6722  encv  6893  dvdsrd  14058
  Copyright terms: Public domain W3C validator