ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 Unicode version

Theorem brrelex12 4505
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4474 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 119 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32ssbrd 3908 . . 3  |-  ( Rel 
R  ->  ( A R B  ->  A ( _V  X.  _V ) B ) )
43imp 123 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A
( _V  X.  _V ) B )
5 brxp 4498 . 2  |-  ( A ( _V  X.  _V ) B  <->  ( A  e. 
_V  /\  B  e.  _V ) )
64, 5sylib 121 1  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1445   _Vcvv 2633    C_ wss 3013   class class class wbr 3867    X. cxp 4465   Rel wrel 4472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474
This theorem is referenced by:  brrelex1  4506  brrelex  4507  brrelex2  4508  brrelex12i  4509  relbrcnvg  4844  ovprc  5722  ersym  6344  relelec  6372  encv  6543
  Copyright terms: Public domain W3C validator