ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 Unicode version

Theorem brrelex12 4731
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4700 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32ssbrd 4102 . . 3  |-  ( Rel 
R  ->  ( A R B  ->  A ( _V  X.  _V ) B ) )
43imp 124 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A
( _V  X.  _V ) B )
5 brxp 4724 . 2  |-  ( A ( _V  X.  _V ) B  <->  ( A  e. 
_V  /\  B  e.  _V ) )
64, 5sylib 122 1  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   _Vcvv 2776    C_ wss 3174   class class class wbr 4059    X. cxp 4691   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700
This theorem is referenced by:  brrelex1  4732  brrelex  4733  brrelex2  4734  brrelex12i  4735  relbrcnvg  5080  ovprc  6003  ersym  6655  relelec  6685  encv  6856  dvdsrd  13971
  Copyright terms: Public domain W3C validator