ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 Unicode version

Theorem brrelex12 4702
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4671 . . . . 5  |-  ( Rel 
R  <->  R  C_  ( _V 
X.  _V ) )
21biimpi 120 . . . 4  |-  ( Rel 
R  ->  R  C_  ( _V  X.  _V ) )
32ssbrd 4077 . . 3  |-  ( Rel 
R  ->  ( A R B  ->  A ( _V  X.  _V ) B ) )
43imp 124 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A
( _V  X.  _V ) B )
5 brxp 4695 . 2  |-  ( A ( _V  X.  _V ) B  <->  ( A  e. 
_V  /\  B  e.  _V ) )
64, 5sylib 122 1  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763    C_ wss 3157   class class class wbr 4034    X. cxp 4662   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671
This theorem is referenced by:  brrelex1  4703  brrelex  4704  brrelex2  4705  brrelex12i  4706  relbrcnvg  5049  ovprc  5961  ersym  6613  relelec  6643  encv  6814  dvdsrd  13726
  Copyright terms: Public domain W3C validator