Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlem7 | Unicode version |
Description: Lemma for isbth 6932. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlem7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5229 | . . 3 | |
2 | funres 5229 | . . 3 | |
3 | dmres 4905 | . . . . . . . . 9 | |
4 | inss1 3342 | . . . . . . . . 9 | |
5 | 3, 4 | eqsstri 3174 | . . . . . . . 8 |
6 | ssrin 3347 | . . . . . . . 8 | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 |
8 | dmres 4905 | . . . . . . . . 9 | |
9 | inss1 3342 | . . . . . . . . 9 | |
10 | 8, 9 | eqsstri 3174 | . . . . . . . 8 |
11 | sslin 3348 | . . . . . . . 8 | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 |
13 | 7, 12 | sstri 3151 | . . . . . 6 |
14 | disjdif 3481 | . . . . . 6 | |
15 | 13, 14 | sseqtri 3176 | . . . . 5 |
16 | ss0 3449 | . . . . 5 | |
17 | 15, 16 | ax-mp 5 | . . . 4 |
18 | funun 5232 | . . . 4 | |
19 | 17, 18 | mpan2 422 | . . 3 |
20 | 1, 2, 19 | syl2an 287 | . 2 |
21 | sbthlem.3 | . . 3 | |
22 | 21 | funeqi 5209 | . 2 |
23 | 20, 22 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 cuni 3789 ccnv 4603 cdm 4604 cres 4606 cima 4607 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-fun 5190 |
This theorem is referenced by: sbthlemi9 6930 |
Copyright terms: Public domain | W3C validator |