ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem7 Unicode version

Theorem sbthlem7 6651
Description: Lemma for isbth 6655. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem7  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  H )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem7
StepHypRef Expression
1 funres 5041 . . 3  |-  ( Fun  f  ->  Fun  ( f  |`  U. D ) )
2 funres 5041 . . 3  |-  ( Fun  `' g  ->  Fun  ( `' g  |`  ( A 
\  U. D ) ) )
3 dmres 4721 . . . . . . . . 9  |-  dom  (
f  |`  U. D )  =  ( U. D  i^i  dom  f )
4 inss1 3218 . . . . . . . . 9  |-  ( U. D  i^i  dom  f )  C_ 
U. D
53, 4eqsstri 3054 . . . . . . . 8  |-  dom  (
f  |`  U. D ) 
C_  U. D
6 ssrin 3223 . . . . . . . 8  |-  ( dom  ( f  |`  U. D
)  C_  U. D  -> 
( dom  ( f  |` 
U. D )  i^i 
dom  ( `' g  |`  ( A  \  U. D ) ) ) 
C_  ( U. D  i^i  dom  ( `' g  |`  ( A  \  U. D ) ) ) )
75, 6ax-mp 7 . . . . . . 7  |-  ( dom  ( f  |`  U. D
)  i^i  dom  ( `' g  |`  ( A  \ 
U. D ) ) )  C_  ( U. D  i^i  dom  ( `' g  |`  ( A  \  U. D ) ) )
8 dmres 4721 . . . . . . . . 9  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
dom  `' g )
9 inss1 3218 . . . . . . . . 9  |-  ( ( A  \  U. D
)  i^i  dom  `' g )  C_  ( A  \ 
U. D )
108, 9eqsstri 3054 . . . . . . . 8  |-  dom  ( `' g  |`  ( A 
\  U. D ) ) 
C_  ( A  \  U. D )
11 sslin 3224 . . . . . . . 8  |-  ( dom  ( `' g  |`  ( A  \  U. D
) )  C_  ( A  \  U. D )  ->  ( U. D  i^i  dom  ( `' g  |`  ( A  \  U. D ) ) ) 
C_  ( U. D  i^i  ( A  \  U. D ) ) )
1210, 11ax-mp 7 . . . . . . 7  |-  ( U. D  i^i  dom  ( `' g  |`  ( A  \  U. D ) ) ) 
C_  ( U. D  i^i  ( A  \  U. D ) )
137, 12sstri 3032 . . . . . 6  |-  ( dom  ( f  |`  U. D
)  i^i  dom  ( `' g  |`  ( A  \ 
U. D ) ) )  C_  ( U. D  i^i  ( A  \  U. D ) )
14 disjdif 3352 . . . . . 6  |-  ( U. D  i^i  ( A  \  U. D ) )  =  (/)
1513, 14sseqtri 3056 . . . . 5  |-  ( dom  ( f  |`  U. D
)  i^i  dom  ( `' g  |`  ( A  \ 
U. D ) ) )  C_  (/)
16 ss0 3320 . . . . 5  |-  ( ( dom  ( f  |`  U. D )  i^i  dom  ( `' g  |`  ( A 
\  U. D ) ) )  C_  (/)  ->  ( dom  ( f  |`  U. D
)  i^i  dom  ( `' g  |`  ( A  \ 
U. D ) ) )  =  (/) )
1715, 16ax-mp 7 . . . 4  |-  ( dom  ( f  |`  U. D
)  i^i  dom  ( `' g  |`  ( A  \ 
U. D ) ) )  =  (/)
18 funun 5044 . . . 4  |-  ( ( ( Fun  ( f  |`  U. D )  /\  Fun  ( `' g  |`  ( A  \  U. D
) ) )  /\  ( dom  ( f  |`  U. D )  i^i  dom  ( `' g  |`  ( A 
\  U. D ) ) )  =  (/) )  ->  Fun  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) ) )
1917, 18mpan2 416 . . 3  |-  ( ( Fun  ( f  |`  U. D )  /\  Fun  ( `' g  |`  ( A 
\  U. D ) ) )  ->  Fun  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D ) ) ) )
201, 2, 19syl2an 283 . 2  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) ) )
21 sbthlem.3 . . 3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
2221funeqi 5022 . 2  |-  ( Fun 
H  <->  Fun  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) ) )
2320, 22sylibr 132 1  |-  ( ( Fun  f  /\  Fun  `' g )  ->  Fun  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   {cab 2074   _Vcvv 2619    \ cdif 2994    u. cun 2995    i^i cin 2996    C_ wss 2997   (/)c0 3284   U.cuni 3648   `'ccnv 4427   dom cdm 4428    |` cres 4430   "cima 4431   Fun wfun 4996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-res 4440  df-fun 5004
This theorem is referenced by:  sbthlemi9  6653
  Copyright terms: Public domain W3C validator