Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlem7 | Unicode version |
Description: Lemma for isbth 6904. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlem7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5208 | . . 3 | |
2 | funres 5208 | . . 3 | |
3 | dmres 4884 | . . . . . . . . 9 | |
4 | inss1 3327 | . . . . . . . . 9 | |
5 | 3, 4 | eqsstri 3160 | . . . . . . . 8 |
6 | ssrin 3332 | . . . . . . . 8 | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 |
8 | dmres 4884 | . . . . . . . . 9 | |
9 | inss1 3327 | . . . . . . . . 9 | |
10 | 8, 9 | eqsstri 3160 | . . . . . . . 8 |
11 | sslin 3333 | . . . . . . . 8 | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 |
13 | 7, 12 | sstri 3137 | . . . . . 6 |
14 | disjdif 3466 | . . . . . 6 | |
15 | 13, 14 | sseqtri 3162 | . . . . 5 |
16 | ss0 3434 | . . . . 5 | |
17 | 15, 16 | ax-mp 5 | . . . 4 |
18 | funun 5211 | . . . 4 | |
19 | 17, 18 | mpan2 422 | . . 3 |
20 | 1, 2, 19 | syl2an 287 | . 2 |
21 | sbthlem.3 | . . 3 | |
22 | 21 | funeqi 5188 | . 2 |
23 | 20, 22 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cab 2143 cvv 2712 cdif 3099 cun 3100 cin 3101 wss 3102 c0 3394 cuni 3772 ccnv 4582 cdm 4583 cres 4585 cima 4586 wfun 5161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-res 4595 df-fun 5169 |
This theorem is referenced by: sbthlemi9 6902 |
Copyright terms: Public domain | W3C validator |