ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioodisj Unicode version

Theorem ioodisj 9897
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
ioodisj  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )

Proof of Theorem ioodisj
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 524 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  B  e.  RR* )
2 iooss1 9820 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  <_  C )  ->  ( C (,) D )  C_  ( B (,) D ) )
31, 2sylancom 417 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( C (,) D
)  C_  ( B (,) D ) )
4 ioossicc 9863 . . . . 5  |-  ( B (,) D )  C_  ( B [,] D )
53, 4sstrdi 3140 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( C (,) D
)  C_  ( B [,] D ) )
6 sslin 3333 . . . 4  |-  ( ( C (,) D ) 
C_  ( B [,] D )  ->  (
( A (,) B
)  i^i  ( C (,) D ) )  C_  ( ( A (,) B )  i^i  ( B [,] D ) ) )
75, 6syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) ) 
C_  ( ( A (,) B )  i^i  ( B [,] D
) ) )
8 simplll 523 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  A  e.  RR* )
9 simplrr 526 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  D  e.  RR* )
10 df-ioo 9796 . . . . 5  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
11 df-icc 9799 . . . . 5  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
12 xrlenlt 7942 . . . . 5  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B  <_  w  <->  -.  w  <  B ) )
1310, 11, 12ixxdisj 9807 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
( A (,) B
)  i^i  ( B [,] D ) )  =  (/) )
148, 1, 9, 13syl3anc 1220 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( B [,] D ) )  =  (/) )
157, 14sseqtrd 3166 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) ) 
C_  (/) )
16 ss0 3434 . 2  |-  ( ( ( A (,) B
)  i^i  ( C (,) D ) )  C_  (/) 
->  ( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
1715, 16syl 14 1  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    i^i cin 3101    C_ wss 3102   (/)c0 3394   class class class wbr 3965  (class class class)co 5824   RR*cxr 7911    < clt 7912    <_ cle 7913   (,)cioo 9792   [,]cicc 9795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-po 4256  df-iso 4257  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-iota 5135  df-fun 5172  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-ioo 9796  df-icc 9799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator