ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioodisj Unicode version

Theorem ioodisj 10189
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
ioodisj  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )

Proof of Theorem ioodisj
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  B  e.  RR* )
2 iooss1 10112 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  <_  C )  ->  ( C (,) D )  C_  ( B (,) D ) )
31, 2sylancom 420 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( C (,) D
)  C_  ( B (,) D ) )
4 ioossicc 10155 . . . . 5  |-  ( B (,) D )  C_  ( B [,] D )
53, 4sstrdi 3236 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( C (,) D
)  C_  ( B [,] D ) )
6 sslin 3430 . . . 4  |-  ( ( C (,) D ) 
C_  ( B [,] D )  ->  (
( A (,) B
)  i^i  ( C (,) D ) )  C_  ( ( A (,) B )  i^i  ( B [,] D ) ) )
75, 6syl 14 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) ) 
C_  ( ( A (,) B )  i^i  ( B [,] D
) ) )
8 simplll 533 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  A  e.  RR* )
9 simplrr 536 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  ->  D  e.  RR* )
10 df-ioo 10088 . . . . 5  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
11 df-icc 10091 . . . . 5  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
12 xrlenlt 8211 . . . . 5  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B  <_  w  <->  -.  w  <  B ) )
1310, 11, 12ixxdisj 10099 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
( A (,) B
)  i^i  ( B [,] D ) )  =  (/) )
148, 1, 9, 13syl3anc 1271 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( B [,] D ) )  =  (/) )
157, 14sseqtrd 3262 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) ) 
C_  (/) )
16 ss0 3532 . 2  |-  ( ( ( A (,) B
)  i^i  ( C (,) D ) )  C_  (/) 
->  ( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
1715, 16syl 14 1  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* ) )  /\  B  <_  C )  -> 
( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196    C_ wss 3197   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   RR*cxr 8180    < clt 8181    <_ cle 8182   (,)cioo 10084   [,]cicc 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-ioo 10088  df-icc 10091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator