| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioodisj | Unicode version | ||
| Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
| Ref | Expression |
|---|---|
| ioodisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . . . 6
| |
| 2 | iooss1 10112 |
. . . . . 6
| |
| 3 | 1, 2 | sylancom 420 |
. . . . 5
|
| 4 | ioossicc 10155 |
. . . . 5
| |
| 5 | 3, 4 | sstrdi 3236 |
. . . 4
|
| 6 | sslin 3430 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | simplll 533 |
. . . 4
| |
| 9 | simplrr 536 |
. . . 4
| |
| 10 | df-ioo 10088 |
. . . . 5
| |
| 11 | df-icc 10091 |
. . . . 5
| |
| 12 | xrlenlt 8211 |
. . . . 5
| |
| 13 | 10, 11, 12 | ixxdisj 10099 |
. . . 4
|
| 14 | 8, 1, 9, 13 | syl3anc 1271 |
. . 3
|
| 15 | 7, 14 | sseqtrd 3262 |
. 2
|
| 16 | ss0 3532 |
. 2
| |
| 17 | 15, 16 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-ioo 10088 df-icc 10091 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |