ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrss Unicode version

Theorem ntrss 14641
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrss  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  C_  ( ( int `  J
) `  S )
)

Proof of Theorem ntrss
StepHypRef Expression
1 simp3 1002 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  S )
2 sspwb 4265 . . . . 5  |-  ( T 
C_  S  <->  ~P T  C_ 
~P S )
3 sslin 3401 . . . . 5  |-  ( ~P T  C_  ~P S  ->  ( J  i^i  ~P T )  C_  ( J  i^i  ~P S ) )
42, 3sylbi 121 . . . 4  |-  ( T 
C_  S  ->  ( J  i^i  ~P T ) 
C_  ( J  i^i  ~P S ) )
54unissd 3877 . . 3  |-  ( T 
C_  S  ->  U. ( J  i^i  ~P T ) 
C_  U. ( J  i^i  ~P S ) )
61, 5syl 14 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  U. ( J  i^i  ~P T ) 
C_  U. ( J  i^i  ~P S ) )
7 simp1 1000 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  J  e.  Top )
8 simp2 1001 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  S  C_  X )
91, 8sstrd 3205 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  X )
10 clscld.1 . . . 4  |-  X  = 
U. J
1110ntrval 14632 . . 3  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( int `  J
) `  T )  =  U. ( J  i^i  ~P T ) )
127, 9, 11syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  =  U. ( J  i^i  ~P T ) )
1310ntrval 14632 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
147, 8, 13syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
156, 12, 143sstr4d 3240 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  C_  ( ( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2177    i^i cin 3167    C_ wss 3168   ~Pcpw 3618   U.cuni 3853   ` cfv 5277   Topctop 14519   intcnt 14615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-top 14520  df-ntr 14618
This theorem is referenced by:  ntrin  14646  ntrcls0  14653
  Copyright terms: Public domain W3C validator