ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrss Unicode version

Theorem ntrss 14778
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrss  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  C_  ( ( int `  J
) `  S )
)

Proof of Theorem ntrss
StepHypRef Expression
1 simp3 1023 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  S )
2 sspwb 4301 . . . . 5  |-  ( T 
C_  S  <->  ~P T  C_ 
~P S )
3 sslin 3430 . . . . 5  |-  ( ~P T  C_  ~P S  ->  ( J  i^i  ~P T )  C_  ( J  i^i  ~P S ) )
42, 3sylbi 121 . . . 4  |-  ( T 
C_  S  ->  ( J  i^i  ~P T ) 
C_  ( J  i^i  ~P S ) )
54unissd 3911 . . 3  |-  ( T 
C_  S  ->  U. ( J  i^i  ~P T ) 
C_  U. ( J  i^i  ~P S ) )
61, 5syl 14 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  U. ( J  i^i  ~P T ) 
C_  U. ( J  i^i  ~P S ) )
7 simp1 1021 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  J  e.  Top )
8 simp2 1022 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  S  C_  X )
91, 8sstrd 3234 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  X )
10 clscld.1 . . . 4  |-  X  = 
U. J
1110ntrval 14769 . . 3  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( int `  J
) `  T )  =  U. ( J  i^i  ~P T ) )
127, 9, 11syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  =  U. ( J  i^i  ~P T ) )
1310ntrval 14769 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
147, 8, 13syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
156, 12, 143sstr4d 3269 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  C_  ( ( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   U.cuni 3887   ` cfv 5314   Topctop 14656   intcnt 14752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-top 14657  df-ntr 14755
This theorem is referenced by:  ntrin  14783  ntrcls0  14790
  Copyright terms: Public domain W3C validator